Metamath Proof Explorer


Theorem dia1dim2

Description: Two expressions for a 1-dimensional subspace of partial vector space A (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 15-Jan-2014) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dia1dim2.h H=LHypK
dia1dim2.t T=LTrnKW
dia1dim2.r R=trLKW
dva1dim2.u U=DVecAKW
dia1dim2.i I=DIsoAKW
dva1dim2.n N=LSpanU
Assertion dia1dim2 KHLWHFTIRF=NF

Proof

Step Hyp Ref Expression
1 dia1dim2.h H=LHypK
2 dia1dim2.t T=LTrnKW
3 dia1dim2.r R=trLKW
4 dva1dim2.u U=DVecAKW
5 dia1dim2.i I=DIsoAKW
6 dva1dim2.n N=LSpanU
7 eqid TEndoKW=TEndoKW
8 eqid ScalarU=ScalarU
9 eqid BaseScalarU=BaseScalarU
10 1 7 4 8 9 dvabase KHLWHBaseScalarU=TEndoKW
11 10 adantr KHLWHFTBaseScalarU=TEndoKW
12 11 rexeqdv KHLWHFTsBaseScalarUg=sUFsTEndoKWg=sUF
13 eqid U=U
14 1 2 7 4 13 dvavsca KHLWHsTEndoKWFTsUF=sF
15 14 anass1rs KHLWHFTsTEndoKWsUF=sF
16 15 eqeq2d KHLWHFTsTEndoKWg=sUFg=sF
17 16 rexbidva KHLWHFTsTEndoKWg=sUFsTEndoKWg=sF
18 12 17 bitrd KHLWHFTsBaseScalarUg=sUFsTEndoKWg=sF
19 18 abbidv KHLWHFTg|sBaseScalarUg=sUF=g|sTEndoKWg=sF
20 1 4 dvalvec KHLWHULVec
21 20 adantr KHLWHFTULVec
22 lveclmod ULVecULMod
23 21 22 syl KHLWHFTULMod
24 simpr KHLWHFTFT
25 eqid BaseU=BaseU
26 1 2 4 25 dvavbase KHLWHBaseU=T
27 26 adantr KHLWHFTBaseU=T
28 24 27 eleqtrrd KHLWHFTFBaseU
29 8 9 25 13 6 lspsn ULModFBaseUNF=g|sBaseScalarUg=sUF
30 23 28 29 syl2anc KHLWHFTNF=g|sBaseScalarUg=sUF
31 1 2 3 7 5 dia1dim KHLWHFTIRF=g|sTEndoKWg=sF
32 19 30 31 3eqtr4rd KHLWHFTIRF=NF