Metamath Proof Explorer


Theorem dibelval3

Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses dibval3.b B = Base K
dibval3.l ˙ = K
dibval3.h H = LHyp K
dibval3.t T = LTrn K W
dibval3.r R = trL K W
dibval3.o 0 ˙ = g T I B
dibval3.i I = DIsoB K W
Assertion dibelval3 K V W H X B X ˙ W Y I X f T Y = f 0 ˙ R f ˙ X

Proof

Step Hyp Ref Expression
1 dibval3.b B = Base K
2 dibval3.l ˙ = K
3 dibval3.h H = LHyp K
4 dibval3.t T = LTrn K W
5 dibval3.r R = trL K W
6 dibval3.o 0 ˙ = g T I B
7 dibval3.i I = DIsoB K W
8 eqid DIsoA K W = DIsoA K W
9 1 2 3 4 6 8 7 dibval2 K V W H X B X ˙ W I X = DIsoA K W X × 0 ˙
10 9 eleq2d K V W H X B X ˙ W Y I X Y DIsoA K W X × 0 ˙
11 1 2 3 4 5 8 diaelval K V W H X B X ˙ W f DIsoA K W X f T R f ˙ X
12 11 anbi1d K V W H X B X ˙ W f DIsoA K W X Y = f 0 ˙ f T R f ˙ X Y = f 0 ˙
13 an13 Y = f s f DIsoA K W X s 0 ˙ s 0 ˙ f DIsoA K W X Y = f s
14 velsn s 0 ˙ s = 0 ˙
15 14 anbi1i s 0 ˙ f DIsoA K W X Y = f s s = 0 ˙ f DIsoA K W X Y = f s
16 13 15 bitri Y = f s f DIsoA K W X s 0 ˙ s = 0 ˙ f DIsoA K W X Y = f s
17 16 exbii s Y = f s f DIsoA K W X s 0 ˙ s s = 0 ˙ f DIsoA K W X Y = f s
18 4 fvexi T V
19 18 mptex g T I B V
20 6 19 eqeltri 0 ˙ V
21 opeq2 s = 0 ˙ f s = f 0 ˙
22 21 eqeq2d s = 0 ˙ Y = f s Y = f 0 ˙
23 22 anbi2d s = 0 ˙ f DIsoA K W X Y = f s f DIsoA K W X Y = f 0 ˙
24 20 23 ceqsexv s s = 0 ˙ f DIsoA K W X Y = f s f DIsoA K W X Y = f 0 ˙
25 17 24 bitri s Y = f s f DIsoA K W X s 0 ˙ f DIsoA K W X Y = f 0 ˙
26 anass f T Y = f 0 ˙ R f ˙ X f T Y = f 0 ˙ R f ˙ X
27 an32 f T Y = f 0 ˙ R f ˙ X f T R f ˙ X Y = f 0 ˙
28 26 27 bitr3i f T Y = f 0 ˙ R f ˙ X f T R f ˙ X Y = f 0 ˙
29 12 25 28 3bitr4g K V W H X B X ˙ W s Y = f s f DIsoA K W X s 0 ˙ f T Y = f 0 ˙ R f ˙ X
30 29 exbidv K V W H X B X ˙ W f s Y = f s f DIsoA K W X s 0 ˙ f f T Y = f 0 ˙ R f ˙ X
31 elxp Y DIsoA K W X × 0 ˙ f s Y = f s f DIsoA K W X s 0 ˙
32 df-rex f T Y = f 0 ˙ R f ˙ X f f T Y = f 0 ˙ R f ˙ X
33 30 31 32 3bitr4g K V W H X B X ˙ W Y DIsoA K W X × 0 ˙ f T Y = f 0 ˙ R f ˙ X
34 10 33 bitrd K V W H X B X ˙ W Y I X f T Y = f 0 ˙ R f ˙ X