Metamath Proof Explorer


Theorem dignn0ehalf

Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010)

Ref Expression
Assertion dignn0ehalf A20A0I0I+1digit2A=Idigit2A2

Proof

Step Hyp Ref Expression
1 nn0cn A0A
2 1 3ad2ant2 A20A0I0A
3 2cnne0 220
4 3 a1i A20A0I0220
5 2nn0 20
6 5 a1i I020
7 id I0I0
8 6 7 nn0expcld I02I0
9 8 nn0cnd I02I
10 2cnd I02
11 2ne0 20
12 11 a1i I020
13 nn0z I0I
14 10 12 13 expne0d I02I0
15 9 14 jca I02I2I0
16 15 3ad2ant3 A20A0I02I2I0
17 divdiv1 A2202I2I0A22I=A22I
18 2 4 16 17 syl3anc A20A0I0A22I=A22I
19 10 9 mulcomd I022I=2I2
20 19 3ad2ant3 A20A0I022I=2I2
21 2cnd A20A0I02
22 simp3 A20A0I0I0
23 21 22 expp1d A20A0I02I+1=2I2
24 20 23 eqtr4d A20A0I022I=2I+1
25 24 oveq2d A20A0I0A22I=A2I+1
26 18 25 eqtr2d A20A0I0A2I+1=A22I
27 26 fveq2d A20A0I0A2I+1=A22I
28 27 oveq1d A20A0I0A2I+1mod2=A22Imod2
29 2nn 2
30 29 a1i A20A0I02
31 peano2nn0 I0I+10
32 31 3ad2ant3 A20A0I0I+10
33 nn0rp0 A0A0+∞
34 33 3ad2ant2 A20A0I0A0+∞
35 nn0digval 2I+10A0+∞I+1digit2A=A2I+1mod2
36 30 32 34 35 syl3anc A20A0I0I+1digit2A=A2I+1mod2
37 nn0rp0 A20A20+∞
38 37 3ad2ant1 A20A0I0A20+∞
39 nn0digval 2I0A20+∞Idigit2A2=A22Imod2
40 30 22 38 39 syl3anc A20A0I0Idigit2A2=A22Imod2
41 28 36 40 3eqtr4d A20A0I0I+1digit2A=Idigit2A2