Metamath Proof Explorer


Theorem dihfval

Description: Isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 28-Jan-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
dihval.i I=DIsoHKW
dihval.d D=DIsoBKW
dihval.c C=DIsoCKW
dihval.u U=DVecHKW
dihval.s S=LSubSpU
dihval.p ˙=LSSumU
Assertion dihfval KVWHI=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 dihval.i I=DIsoHKW
8 dihval.d D=DIsoBKW
9 dihval.c C=DIsoCKW
10 dihval.u U=DVecHKW
11 dihval.s S=LSubSpU
12 dihval.p ˙=LSSumU
13 1 2 3 4 5 6 dihffval KVDIsoHK=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
14 13 fveq1d KVDIsoHKW=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙wW
15 7 14 eqtrid KVI=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙wW
16 breq2 w=Wx˙wx˙W
17 fveq2 w=WDIsoBKw=DIsoBKW
18 17 8 eqtr4di w=WDIsoBKw=D
19 18 fveq1d w=WDIsoBKwx=Dx
20 fveq2 w=WDVecHKw=DVecHKW
21 20 10 eqtr4di w=WDVecHKw=U
22 21 fveq2d w=WLSubSpDVecHKw=LSubSpU
23 22 11 eqtr4di w=WLSubSpDVecHKw=S
24 breq2 w=Wq˙wq˙W
25 24 notbid w=W¬q˙w¬q˙W
26 oveq2 w=Wx˙w=x˙W
27 26 oveq2d w=Wq˙x˙w=q˙x˙W
28 27 eqeq1d w=Wq˙x˙w=xq˙x˙W=x
29 25 28 anbi12d w=W¬q˙wq˙x˙w=x¬q˙Wq˙x˙W=x
30 21 fveq2d w=WLSSumDVecHKw=LSSumU
31 30 12 eqtr4di w=WLSSumDVecHKw=˙
32 fveq2 w=WDIsoCKw=DIsoCKW
33 32 9 eqtr4di w=WDIsoCKw=C
34 33 fveq1d w=WDIsoCKwq=Cq
35 18 26 fveq12d w=WDIsoBKwx˙w=Dx˙W
36 31 34 35 oveq123d w=WDIsoCKwqLSSumDVecHKwDIsoBKwx˙w=Cq˙Dx˙W
37 36 eqeq2d w=Wu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙wu=Cq˙Dx˙W
38 29 37 imbi12d w=W¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
39 38 ralbidv w=WqA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙wqA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
40 23 39 riotaeqbidv w=WιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w=ιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
41 16 19 40 ifbieq12d w=Wifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w=ifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
42 41 mpteq2dv w=WxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
43 eqid wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
44 42 43 1 mptfvmpt WHwHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙wW=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W
45 15 44 sylan9eq KVWHI=xBifx˙WDxιuS|qA¬q˙Wq˙x˙W=xu=Cq˙Dx˙W