Metamath Proof Explorer


Theorem dihmeetlem19N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem14.b B=BaseK
dihmeetlem14.l ˙=K
dihmeetlem14.h H=LHypK
dihmeetlem14.j ˙=joinK
dihmeetlem14.m ˙=meetK
dihmeetlem14.a A=AtomsK
dihmeetlem14.u U=DVecHKW
dihmeetlem14.s ˙=LSSumU
dihmeetlem14.i I=DIsoHKW
Assertion dihmeetlem19N KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeetlem14.b B=BaseK
2 dihmeetlem14.l ˙=K
3 dihmeetlem14.h H=LHypK
4 dihmeetlem14.j ˙=joinK
5 dihmeetlem14.m ˙=meetK
6 dihmeetlem14.a A=AtomsK
7 dihmeetlem14.u U=DVecHKW
8 dihmeetlem14.s ˙=LSSumU
9 dihmeetlem14.i I=DIsoHKW
10 incom IpIY=IYIp
11 eqid 0U=0U
12 1 2 3 4 5 6 7 8 9 11 dihmeetlem18N KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIYIp=0U
13 10 12 eqtrid KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIpIY=0U
14 13 oveq2d KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙Y˙IpIY=IX˙Y˙0U
15 simpl1 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKHLWH
16 simpl2l KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WXB
17 simpl3 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WYB
18 simpr1 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WpA¬p˙W
19 simpr31 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙Wp˙X
20 simpr33 KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WX˙Y˙W
21 1 2 3 4 5 6 7 8 9 dihmeetlem12N KHLWHXBYBpA¬p˙Wp˙XX˙Y˙WIX˙Y˙IpIY=IXIY
22 15 16 17 18 19 20 21 syl33anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙Y˙IpIY=IXIY
23 3 7 15 dvhlmod KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WULMod
24 simpl1l KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKHL
25 24 hllatd KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WKLat
26 1 5 latmcl KLatXBYBX˙YB
27 25 16 17 26 syl3anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WX˙YB
28 eqid LSubSpU=LSubSpU
29 1 3 9 7 28 dihlss KHLWHX˙YBIX˙YLSubSpU
30 15 27 29 syl2anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙YLSubSpU
31 28 lsssubg ULModIX˙YLSubSpUIX˙YSubGrpU
32 23 30 31 syl2anc KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙YSubGrpU
33 11 8 lsm01 IX˙YSubGrpUIX˙Y˙0U=IX˙Y
34 32 33 syl KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙Y˙0U=IX˙Y
35 14 22 34 3eqtr3rd KHLWHXB¬X˙WYBpA¬p˙WrA¬r˙Wp˙Xr˙YX˙Y˙WIX˙Y=IXIY