Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem14.b | |
|
dihmeetlem14.l | |
||
dihmeetlem14.h | |
||
dihmeetlem14.j | |
||
dihmeetlem14.m | |
||
dihmeetlem14.a | |
||
dihmeetlem14.u | |
||
dihmeetlem14.s | |
||
dihmeetlem14.i | |
||
Assertion | dihmeetlem19N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem14.b | |
|
2 | dihmeetlem14.l | |
|
3 | dihmeetlem14.h | |
|
4 | dihmeetlem14.j | |
|
5 | dihmeetlem14.m | |
|
6 | dihmeetlem14.a | |
|
7 | dihmeetlem14.u | |
|
8 | dihmeetlem14.s | |
|
9 | dihmeetlem14.i | |
|
10 | incom | |
|
11 | eqid | |
|
12 | 1 2 3 4 5 6 7 8 9 11 | dihmeetlem18N | |
13 | 10 12 | eqtrid | |
14 | 13 | oveq2d | |
15 | simpl1 | |
|
16 | simpl2l | |
|
17 | simpl3 | |
|
18 | simpr1 | |
|
19 | simpr31 | |
|
20 | simpr33 | |
|
21 | 1 2 3 4 5 6 7 8 9 | dihmeetlem12N | |
22 | 15 16 17 18 19 20 21 | syl33anc | |
23 | 3 7 15 | dvhlmod | |
24 | simpl1l | |
|
25 | 24 | hllatd | |
26 | 1 5 | latmcl | |
27 | 25 16 17 26 | syl3anc | |
28 | eqid | |
|
29 | 1 3 9 7 28 | dihlss | |
30 | 15 27 29 | syl2anc | |
31 | 28 | lsssubg | |
32 | 23 30 31 | syl2anc | |
33 | 11 8 | lsm01 | |
34 | 32 33 | syl | |
35 | 14 22 34 | 3eqtr3rd | |