Metamath Proof Explorer


Theorem dihprrnlem2

Description: Lemma for dihprrn . (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihprrn.h H = LHyp K
dihprrn.u U = DVecH K W
dihprrn.v V = Base U
dihprrn.n N = LSpan U
dihprrn.i I = DIsoH K W
dihprrn.k φ K HL W H
dihprrn.x φ X V
dihprrn.y φ Y V
dihprrnlem2.o 0 ˙ = 0 U
dihprrnlem2.xz φ X 0 ˙
dihprrnlem2.yz φ Y 0 ˙
Assertion dihprrnlem2 φ N X Y ran I

Proof

Step Hyp Ref Expression
1 dihprrn.h H = LHyp K
2 dihprrn.u U = DVecH K W
3 dihprrn.v V = Base U
4 dihprrn.n N = LSpan U
5 dihprrn.i I = DIsoH K W
6 dihprrn.k φ K HL W H
7 dihprrn.x φ X V
8 dihprrn.y φ Y V
9 dihprrnlem2.o 0 ˙ = 0 U
10 dihprrnlem2.xz φ X 0 ˙
11 dihprrnlem2.yz φ Y 0 ˙
12 df-pr X Y = X Y
13 12 fveq2i N X Y = N X Y
14 eqid join K = join K
15 eqid Atoms K = Atoms K
16 eqid LSSum U = LSSum U
17 15 1 2 3 9 4 5 dihlspsnat K HL W H X V X 0 ˙ I -1 N X Atoms K
18 6 7 10 17 syl3anc φ I -1 N X Atoms K
19 15 1 2 3 9 4 5 dihlspsnat K HL W H Y V Y 0 ˙ I -1 N Y Atoms K
20 6 8 11 19 syl3anc φ I -1 N Y Atoms K
21 1 14 15 2 16 5 6 18 20 dihjat φ I I -1 N X join K I -1 N Y = I I -1 N X LSSum U I I -1 N Y
22 1 2 3 4 5 dihlsprn K HL W H X V N X ran I
23 6 7 22 syl2anc φ N X ran I
24 1 5 dihcnvid2 K HL W H N X ran I I I -1 N X = N X
25 6 23 24 syl2anc φ I I -1 N X = N X
26 1 2 3 4 5 dihlsprn K HL W H Y V N Y ran I
27 6 8 26 syl2anc φ N Y ran I
28 1 5 dihcnvid2 K HL W H N Y ran I I I -1 N Y = N Y
29 6 27 28 syl2anc φ I I -1 N Y = N Y
30 25 29 oveq12d φ I I -1 N X LSSum U I I -1 N Y = N X LSSum U N Y
31 1 2 6 dvhlmod φ U LMod
32 7 snssd φ X V
33 8 snssd φ Y V
34 3 4 16 lsmsp2 U LMod X V Y V N X LSSum U N Y = N X Y
35 31 32 33 34 syl3anc φ N X LSSum U N Y = N X Y
36 21 30 35 3eqtrrd φ N X Y = I I -1 N X join K I -1 N Y
37 13 36 eqtrid φ N X Y = I I -1 N X join K I -1 N Y
38 6 simpld φ K HL
39 38 hllatd φ K Lat
40 eqid Base K = Base K
41 40 1 5 dihcnvcl K HL W H N X ran I I -1 N X Base K
42 6 23 41 syl2anc φ I -1 N X Base K
43 40 1 5 dihcnvcl K HL W H N Y ran I I -1 N Y Base K
44 6 27 43 syl2anc φ I -1 N Y Base K
45 40 14 latjcl K Lat I -1 N X Base K I -1 N Y Base K I -1 N X join K I -1 N Y Base K
46 39 42 44 45 syl3anc φ I -1 N X join K I -1 N Y Base K
47 40 1 5 dihcl K HL W H I -1 N X join K I -1 N Y Base K I I -1 N X join K I -1 N Y ran I
48 6 46 47 syl2anc φ I I -1 N X join K I -1 N Y ran I
49 37 48 eqeltrd φ N X Y ran I