Step |
Hyp |
Ref |
Expression |
1 |
|
dihprrn.h |
|
2 |
|
dihprrn.u |
|
3 |
|
dihprrn.v |
|
4 |
|
dihprrn.n |
|
5 |
|
dihprrn.i |
|
6 |
|
dihprrn.k |
|
7 |
|
dihprrn.x |
|
8 |
|
dihprrn.y |
|
9 |
|
dihprrnlem2.o |
|
10 |
|
dihprrnlem2.xz |
|
11 |
|
dihprrnlem2.yz |
|
12 |
|
df-pr |
|
13 |
12
|
fveq2i |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 1 2 3 9 4 5
|
dihlspsnat |
|
18 |
6 7 10 17
|
syl3anc |
|
19 |
15 1 2 3 9 4 5
|
dihlspsnat |
|
20 |
6 8 11 19
|
syl3anc |
|
21 |
1 14 15 2 16 5 6 18 20
|
dihjat |
|
22 |
1 2 3 4 5
|
dihlsprn |
|
23 |
6 7 22
|
syl2anc |
|
24 |
1 5
|
dihcnvid2 |
|
25 |
6 23 24
|
syl2anc |
|
26 |
1 2 3 4 5
|
dihlsprn |
|
27 |
6 8 26
|
syl2anc |
|
28 |
1 5
|
dihcnvid2 |
|
29 |
6 27 28
|
syl2anc |
|
30 |
25 29
|
oveq12d |
|
31 |
1 2 6
|
dvhlmod |
|
32 |
7
|
snssd |
|
33 |
8
|
snssd |
|
34 |
3 4 16
|
lsmsp2 |
|
35 |
31 32 33 34
|
syl3anc |
|
36 |
21 30 35
|
3eqtrrd |
|
37 |
13 36
|
eqtrid |
|
38 |
6
|
simpld |
|
39 |
38
|
hllatd |
|
40 |
|
eqid |
|
41 |
40 1 5
|
dihcnvcl |
|
42 |
6 23 41
|
syl2anc |
|
43 |
40 1 5
|
dihcnvcl |
|
44 |
6 27 43
|
syl2anc |
|
45 |
40 14
|
latjcl |
|
46 |
39 42 44 45
|
syl3anc |
|
47 |
40 1 5
|
dihcl |
|
48 |
6 46 47
|
syl2anc |
|
49 |
37 48
|
eqeltrd |
|