Metamath Proof Explorer


Theorem discmp

Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion discmp AFin𝒫AComp

Proof

Step Hyp Ref Expression
1 distop AFin𝒫ATop
2 pwfi AFin𝒫AFin
3 2 biimpi AFin𝒫AFin
4 1 3 elind AFin𝒫ATopFin
5 fincmp 𝒫ATopFin𝒫AComp
6 4 5 syl AFin𝒫AComp
7 simpr 𝒫ACompxAxA
8 7 snssd 𝒫ACompxAxA
9 vsnex xV
10 9 elpw x𝒫AxA
11 8 10 sylibr 𝒫ACompxAx𝒫A
12 11 fmpttd 𝒫ACompxAx:A𝒫A
13 12 frnd 𝒫ACompranxAx𝒫A
14 eqid xAx=xAx
15 14 rnmpt ranxAx=y|xAy=x
16 15 unieqi ranxAx=y|xAy=x
17 9 dfiun2 xAx=y|xAy=x
18 iunid xAx=A
19 16 17 18 3eqtr2ri A=ranxAx
20 19 a1i 𝒫ACompA=ranxAx
21 unipw 𝒫A=A
22 21 eqcomi A=𝒫A
23 22 cmpcov 𝒫ACompranxAx𝒫AA=ranxAxy𝒫ranxAxFinA=y
24 13 20 23 mpd3an23 𝒫ACompy𝒫ranxAxFinA=y
25 elinel2 y𝒫ranxAxFinyFin
26 elinel1 y𝒫ranxAxFiny𝒫ranxAx
27 26 elpwid y𝒫ranxAxFinyranxAx
28 snfi xFin
29 28 rgenw xAxFin
30 14 fmpt xAxFinxAx:AFin
31 29 30 mpbi xAx:AFin
32 frn xAx:AFinranxAxFin
33 31 32 mp1i y𝒫ranxAxFinranxAxFin
34 27 33 sstrd y𝒫ranxAxFinyFin
35 unifi yFinyFinyFin
36 25 34 35 syl2anc y𝒫ranxAxFinyFin
37 eleq1 A=yAFinyFin
38 36 37 syl5ibrcom y𝒫ranxAxFinA=yAFin
39 38 rexlimiv y𝒫ranxAxFinA=yAFin
40 24 39 syl 𝒫ACompAFin
41 6 40 impbii AFin𝒫AComp