Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | discmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop | |
|
2 | pwfi | |
|
3 | 2 | biimpi | |
4 | 1 3 | elind | |
5 | fincmp | |
|
6 | 4 5 | syl | |
7 | simpr | |
|
8 | 7 | snssd | |
9 | vsnex | |
|
10 | 9 | elpw | |
11 | 8 10 | sylibr | |
12 | 11 | fmpttd | |
13 | 12 | frnd | |
14 | eqid | |
|
15 | 14 | rnmpt | |
16 | 15 | unieqi | |
17 | 9 | dfiun2 | |
18 | iunid | |
|
19 | 16 17 18 | 3eqtr2ri | |
20 | 19 | a1i | |
21 | unipw | |
|
22 | 21 | eqcomi | |
23 | 22 | cmpcov | |
24 | 13 20 23 | mpd3an23 | |
25 | elinel2 | |
|
26 | elinel1 | |
|
27 | 26 | elpwid | |
28 | snfi | |
|
29 | 28 | rgenw | |
30 | 14 | fmpt | |
31 | 29 30 | mpbi | |
32 | frn | |
|
33 | 31 32 | mp1i | |
34 | 27 33 | sstrd | |
35 | unifi | |
|
36 | 25 34 35 | syl2anc | |
37 | eleq1 | |
|
38 | 36 37 | syl5ibrcom | |
39 | 38 | rexlimiv | |
40 | 24 39 | syl | |
41 | 6 40 | impbii | |