Metamath Proof Explorer


Theorem discmp

Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion discmp A Fin 𝒫 A Comp

Proof

Step Hyp Ref Expression
1 distop A Fin 𝒫 A Top
2 pwfi A Fin 𝒫 A Fin
3 2 biimpi A Fin 𝒫 A Fin
4 1 3 elind A Fin 𝒫 A Top Fin
5 fincmp 𝒫 A Top Fin 𝒫 A Comp
6 4 5 syl A Fin 𝒫 A Comp
7 simpr 𝒫 A Comp x A x A
8 7 snssd 𝒫 A Comp x A x A
9 snex x V
10 9 elpw x 𝒫 A x A
11 8 10 sylibr 𝒫 A Comp x A x 𝒫 A
12 11 fmpttd 𝒫 A Comp x A x : A 𝒫 A
13 12 frnd 𝒫 A Comp ran x A x 𝒫 A
14 eqid x A x = x A x
15 14 rnmpt ran x A x = y | x A y = x
16 15 unieqi ran x A x = y | x A y = x
17 9 dfiun2 x A x = y | x A y = x
18 iunid x A x = A
19 16 17 18 3eqtr2ri A = ran x A x
20 19 a1i 𝒫 A Comp A = ran x A x
21 unipw 𝒫 A = A
22 21 eqcomi A = 𝒫 A
23 22 cmpcov 𝒫 A Comp ran x A x 𝒫 A A = ran x A x y 𝒫 ran x A x Fin A = y
24 13 20 23 mpd3an23 𝒫 A Comp y 𝒫 ran x A x Fin A = y
25 elinel2 y 𝒫 ran x A x Fin y Fin
26 elinel1 y 𝒫 ran x A x Fin y 𝒫 ran x A x
27 26 elpwid y 𝒫 ran x A x Fin y ran x A x
28 snfi x Fin
29 28 rgenw x A x Fin
30 14 fmpt x A x Fin x A x : A Fin
31 29 30 mpbi x A x : A Fin
32 frn x A x : A Fin ran x A x Fin
33 31 32 mp1i y 𝒫 ran x A x Fin ran x A x Fin
34 27 33 sstrd y 𝒫 ran x A x Fin y Fin
35 unifi y Fin y Fin y Fin
36 25 34 35 syl2anc y 𝒫 ran x A x Fin y Fin
37 eleq1 A = y A Fin y Fin
38 36 37 syl5ibrcom y 𝒫 ran x A x Fin A = y A Fin
39 38 rexlimiv y 𝒫 ran x A x Fin A = y A Fin
40 24 39 syl 𝒫 A Comp A Fin
41 6 40 impbii A Fin 𝒫 A Comp