Metamath Proof Explorer


Theorem distrsr

Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion distrsr A𝑹B+𝑹C=A𝑹B+𝑹A𝑹C

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 addsrpr z𝑷w𝑷v𝑷u𝑷zw~𝑹+𝑹vu~𝑹=z+𝑷vw+𝑷u~𝑹
3 mulsrpr x𝑷y𝑷z+𝑷v𝑷w+𝑷u𝑷xy~𝑹𝑹z+𝑷vw+𝑷u~𝑹=x𝑷z+𝑷v+𝑷y𝑷w+𝑷ux𝑷w+𝑷u+𝑷y𝑷z+𝑷v~𝑹
4 mulsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹𝑹zw~𝑹=x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹
5 mulsrpr x𝑷y𝑷v𝑷u𝑷xy~𝑹𝑹vu~𝑹=x𝑷v+𝑷y𝑷ux𝑷u+𝑷y𝑷v~𝑹
6 addsrpr x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷x𝑷v+𝑷y𝑷u𝑷x𝑷u+𝑷y𝑷v𝑷x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹+𝑹x𝑷v+𝑷y𝑷ux𝑷u+𝑷y𝑷v~𝑹=x𝑷z+𝑷y𝑷w+𝑷x𝑷v+𝑷y𝑷ux𝑷w+𝑷y𝑷z+𝑷x𝑷u+𝑷y𝑷v~𝑹
7 addclpr z𝑷v𝑷z+𝑷v𝑷
8 addclpr w𝑷u𝑷w+𝑷u𝑷
9 7 8 anim12i z𝑷v𝑷w𝑷u𝑷z+𝑷v𝑷w+𝑷u𝑷
10 9 an4s z𝑷w𝑷v𝑷u𝑷z+𝑷v𝑷w+𝑷u𝑷
11 mulclpr x𝑷z𝑷x𝑷z𝑷
12 mulclpr y𝑷w𝑷y𝑷w𝑷
13 addclpr x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
14 11 12 13 syl2an x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
15 14 an4s x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
16 mulclpr x𝑷w𝑷x𝑷w𝑷
17 mulclpr y𝑷z𝑷y𝑷z𝑷
18 addclpr x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
19 16 17 18 syl2an x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
20 19 an42s x𝑷y𝑷z𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
21 15 20 jca x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
22 mulclpr x𝑷v𝑷x𝑷v𝑷
23 mulclpr y𝑷u𝑷y𝑷u𝑷
24 addclpr x𝑷v𝑷y𝑷u𝑷x𝑷v+𝑷y𝑷u𝑷
25 22 23 24 syl2an x𝑷v𝑷y𝑷u𝑷x𝑷v+𝑷y𝑷u𝑷
26 25 an4s x𝑷y𝑷v𝑷u𝑷x𝑷v+𝑷y𝑷u𝑷
27 mulclpr x𝑷u𝑷x𝑷u𝑷
28 mulclpr y𝑷v𝑷y𝑷v𝑷
29 addclpr x𝑷u𝑷y𝑷v𝑷x𝑷u+𝑷y𝑷v𝑷
30 27 28 29 syl2an x𝑷u𝑷y𝑷v𝑷x𝑷u+𝑷y𝑷v𝑷
31 30 an42s x𝑷y𝑷v𝑷u𝑷x𝑷u+𝑷y𝑷v𝑷
32 26 31 jca x𝑷y𝑷v𝑷u𝑷x𝑷v+𝑷y𝑷u𝑷x𝑷u+𝑷y𝑷v𝑷
33 distrpr x𝑷z+𝑷v=x𝑷z+𝑷x𝑷v
34 distrpr y𝑷w+𝑷u=y𝑷w+𝑷y𝑷u
35 33 34 oveq12i x𝑷z+𝑷v+𝑷y𝑷w+𝑷u=x𝑷z+𝑷x𝑷v+𝑷y𝑷w+𝑷y𝑷u
36 ovex x𝑷zV
37 ovex x𝑷vV
38 ovex y𝑷wV
39 addcompr f+𝑷g=g+𝑷f
40 addasspr f+𝑷g+𝑷h=f+𝑷g+𝑷h
41 ovex y𝑷uV
42 36 37 38 39 40 41 caov4 x𝑷z+𝑷x𝑷v+𝑷y𝑷w+𝑷y𝑷u=x𝑷z+𝑷y𝑷w+𝑷x𝑷v+𝑷y𝑷u
43 35 42 eqtri x𝑷z+𝑷v+𝑷y𝑷w+𝑷u=x𝑷z+𝑷y𝑷w+𝑷x𝑷v+𝑷y𝑷u
44 distrpr x𝑷w+𝑷u=x𝑷w+𝑷x𝑷u
45 distrpr y𝑷z+𝑷v=y𝑷z+𝑷y𝑷v
46 44 45 oveq12i x𝑷w+𝑷u+𝑷y𝑷z+𝑷v=x𝑷w+𝑷x𝑷u+𝑷y𝑷z+𝑷y𝑷v
47 ovex x𝑷wV
48 ovex x𝑷uV
49 ovex y𝑷zV
50 ovex y𝑷vV
51 47 48 49 39 40 50 caov4 x𝑷w+𝑷x𝑷u+𝑷y𝑷z+𝑷y𝑷v=x𝑷w+𝑷y𝑷z+𝑷x𝑷u+𝑷y𝑷v
52 46 51 eqtri x𝑷w+𝑷u+𝑷y𝑷z+𝑷v=x𝑷w+𝑷y𝑷z+𝑷x𝑷u+𝑷y𝑷v
53 1 2 3 4 5 6 10 21 32 43 52 ecovdi A𝑹B𝑹C𝑹A𝑹B+𝑹C=A𝑹B+𝑹A𝑹C
54 dmaddsr dom+𝑹=𝑹×𝑹
55 0nsr ¬𝑹
56 dmmulsr dom𝑹=𝑹×𝑹
57 54 55 56 ndmovdistr ¬A𝑹B𝑹C𝑹A𝑹B+𝑹C=A𝑹B+𝑹A𝑹C
58 53 57 pm2.61i A𝑹B+𝑹C=A𝑹B+𝑹A𝑹C