Metamath Proof Explorer


Theorem divgcdodd

Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014)

Ref Expression
Assertion divgcdodd AB¬2AAgcdB¬2BAgcdB

Proof

Step Hyp Ref Expression
1 n2dvds1 ¬21
2 2z 2
3 nnz AA
4 nnz BB
5 gcddvds ABAgcdBAAgcdBB
6 3 4 5 syl2an ABAgcdBAAgcdBB
7 6 simpld ABAgcdBA
8 gcdnncl ABAgcdB
9 8 nnzd ABAgcdB
10 8 nnne0d ABAgcdB0
11 3 adantr ABA
12 dvdsval2 AgcdBAgcdB0AAgcdBAAAgcdB
13 9 10 11 12 syl3anc ABAgcdBAAAgcdB
14 7 13 mpbid ABAAgcdB
15 6 simprd ABAgcdBB
16 4 adantl ABB
17 dvdsval2 AgcdBAgcdB0BAgcdBBBAgcdB
18 9 10 16 17 syl3anc ABAgcdBBBAgcdB
19 15 18 mpbid ABBAgcdB
20 dvdsgcdb 2AAgcdBBAgcdB2AAgcdB2BAgcdB2AAgcdBgcdBAgcdB
21 2 14 19 20 mp3an2i AB2AAgcdB2BAgcdB2AAgcdBgcdBAgcdB
22 gcddiv ABAgcdBAgcdBAAgcdBBAgcdBAgcdB=AAgcdBgcdBAgcdB
23 11 16 8 6 22 syl31anc ABAgcdBAgcdB=AAgcdBgcdBAgcdB
24 8 nncnd ABAgcdB
25 24 10 dividd ABAgcdBAgcdB=1
26 23 25 eqtr3d ABAAgcdBgcdBAgcdB=1
27 26 breq2d AB2AAgcdBgcdBAgcdB21
28 27 biimpd AB2AAgcdBgcdBAgcdB21
29 21 28 sylbid AB2AAgcdB2BAgcdB21
30 29 expdimp AB2AAgcdB2BAgcdB21
31 1 30 mtoi AB2AAgcdB¬2BAgcdB
32 31 ex AB2AAgcdB¬2BAgcdB
33 imor 2AAgcdB¬2BAgcdB¬2AAgcdB¬2BAgcdB
34 32 33 sylib AB¬2AAgcdB¬2BAgcdB