Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | divgcdodd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n2dvds1 | |
|
2 | 2z | |
|
3 | nnz | |
|
4 | nnz | |
|
5 | gcddvds | |
|
6 | 3 4 5 | syl2an | |
7 | 6 | simpld | |
8 | gcdnncl | |
|
9 | 8 | nnzd | |
10 | 8 | nnne0d | |
11 | 3 | adantr | |
12 | dvdsval2 | |
|
13 | 9 10 11 12 | syl3anc | |
14 | 7 13 | mpbid | |
15 | 6 | simprd | |
16 | 4 | adantl | |
17 | dvdsval2 | |
|
18 | 9 10 16 17 | syl3anc | |
19 | 15 18 | mpbid | |
20 | dvdsgcdb | |
|
21 | 2 14 19 20 | mp3an2i | |
22 | gcddiv | |
|
23 | 11 16 8 6 22 | syl31anc | |
24 | 8 | nncnd | |
25 | 24 10 | dividd | |
26 | 23 25 | eqtr3d | |
27 | 26 | breq2d | |
28 | 27 | biimpd | |
29 | 21 28 | sylbid | |
30 | 29 | expdimp | |
31 | 1 30 | mtoi | |
32 | 31 | ex | |
33 | imor | |
|
34 | 32 33 | sylib | |