Metamath Proof Explorer


Theorem divgcdoddALTV

Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion divgcdoddALTV A B A A gcd B Odd B A gcd B Odd

Proof

Step Hyp Ref Expression
1 divgcdodd A B ¬ 2 A A gcd B ¬ 2 B A gcd B
2 nnz A A
3 nnz B B
4 gcddvds A B A gcd B A A gcd B B
5 2 3 4 syl2an A B A gcd B A A gcd B B
6 5 simpld A B A gcd B A
7 2 3 anim12i A B A B
8 nnne0 A A 0
9 8 neneqd A ¬ A = 0
10 9 intnanrd A ¬ A = 0 B = 0
11 10 adantr A B ¬ A = 0 B = 0
12 gcdn0cl A B ¬ A = 0 B = 0 A gcd B
13 7 11 12 syl2anc A B A gcd B
14 13 nnzd A B A gcd B
15 13 nnne0d A B A gcd B 0
16 2 adantr A B A
17 dvdsval2 A gcd B A gcd B 0 A A gcd B A A A gcd B
18 14 15 16 17 syl3anc A B A gcd B A A A gcd B
19 6 18 mpbid A B A A gcd B
20 19 biantrurd A B ¬ 2 A A gcd B A A gcd B ¬ 2 A A gcd B
21 5 simprd A B A gcd B B
22 3 adantl A B B
23 dvdsval2 A gcd B A gcd B 0 B A gcd B B B A gcd B
24 14 15 22 23 syl3anc A B A gcd B B B A gcd B
25 21 24 mpbid A B B A gcd B
26 25 biantrurd A B ¬ 2 B A gcd B B A gcd B ¬ 2 B A gcd B
27 20 26 orbi12d A B ¬ 2 A A gcd B ¬ 2 B A gcd B A A gcd B ¬ 2 A A gcd B B A gcd B ¬ 2 B A gcd B
28 1 27 mpbid A B A A gcd B ¬ 2 A A gcd B B A gcd B ¬ 2 B A gcd B
29 isodd3 A A gcd B Odd A A gcd B ¬ 2 A A gcd B
30 isodd3 B A gcd B Odd B A gcd B ¬ 2 B A gcd B
31 29 30 orbi12i A A gcd B Odd B A gcd B Odd A A gcd B ¬ 2 A A gcd B B A gcd B ¬ 2 B A gcd B
32 28 31 sylibr A B A A gcd B Odd B A gcd B Odd