Metamath Proof Explorer


Theorem divgcdoddALTV

Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion divgcdoddALTV ABAAgcdBOddBAgcdBOdd

Proof

Step Hyp Ref Expression
1 divgcdodd AB¬2AAgcdB¬2BAgcdB
2 nnz AA
3 nnz BB
4 gcddvds ABAgcdBAAgcdBB
5 2 3 4 syl2an ABAgcdBAAgcdBB
6 5 simpld ABAgcdBA
7 2 3 anim12i ABAB
8 nnne0 AA0
9 8 neneqd A¬A=0
10 9 intnanrd A¬A=0B=0
11 10 adantr AB¬A=0B=0
12 gcdn0cl AB¬A=0B=0AgcdB
13 7 11 12 syl2anc ABAgcdB
14 13 nnzd ABAgcdB
15 13 nnne0d ABAgcdB0
16 2 adantr ABA
17 dvdsval2 AgcdBAgcdB0AAgcdBAAAgcdB
18 14 15 16 17 syl3anc ABAgcdBAAAgcdB
19 6 18 mpbid ABAAgcdB
20 19 biantrurd AB¬2AAgcdBAAgcdB¬2AAgcdB
21 5 simprd ABAgcdBB
22 3 adantl ABB
23 dvdsval2 AgcdBAgcdB0BAgcdBBBAgcdB
24 14 15 22 23 syl3anc ABAgcdBBBAgcdB
25 21 24 mpbid ABBAgcdB
26 25 biantrurd AB¬2BAgcdBBAgcdB¬2BAgcdB
27 20 26 orbi12d AB¬2AAgcdB¬2BAgcdBAAgcdB¬2AAgcdBBAgcdB¬2BAgcdB
28 1 27 mpbid ABAAgcdB¬2AAgcdBBAgcdB¬2BAgcdB
29 isodd3 AAgcdBOddAAgcdB¬2AAgcdB
30 isodd3 BAgcdBOddBAgcdB¬2BAgcdB
31 29 30 orbi12i AAgcdBOddBAgcdBOddAAgcdB¬2AAgcdBBAgcdB¬2BAgcdB
32 28 31 sylibr ABAAgcdBOddBAgcdBOdd