Metamath Proof Explorer


Theorem dmdbr3

Description: Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion dmdbr3 ACBCA𝑀*BxCxBAB=xBAB

Proof

Step Hyp Ref Expression
1 dmdbr ACBCA𝑀*ByCByyAB=yAB
2 chub2 BCxCBxB
3 2 ancoms xCBCBxB
4 chjcl xCBCxBC
5 sseq2 y=xBByBxB
6 ineq1 y=xByA=xBA
7 6 oveq1d y=xByAB=xBAB
8 ineq1 y=xByAB=xBAB
9 7 8 eqeq12d y=xByAB=yABxBAB=xBAB
10 5 9 imbi12d y=xBByyAB=yABBxBxBAB=xBAB
11 10 rspcv xBCyCByyAB=yABBxBxBAB=xBAB
12 4 11 syl xCBCyCByyAB=yABBxBxBAB=xBAB
13 3 12 mpid xCBCyCByyAB=yABxBAB=xBAB
14 13 ex xCBCyCByyAB=yABxBAB=xBAB
15 14 com3l BCyCByyAB=yABxCxBAB=xBAB
16 15 ralrimdv BCyCByyAB=yABxCxBAB=xBAB
17 chlejb2 BCxCBxxB=x
18 17 biimpa BCxCBxxB=x
19 18 ineq1d BCxCBxxBA=xA
20 19 oveq1d BCxCBxxBAB=xAB
21 18 ineq1d BCxCBxxBAB=xAB
22 20 21 eqeq12d BCxCBxxBAB=xBABxAB=xAB
23 22 biimpd BCxCBxxBAB=xBABxAB=xAB
24 23 ex BCxCBxxBAB=xBABxAB=xAB
25 24 com23 BCxCxBAB=xBABBxxAB=xAB
26 25 ralimdva BCxCxBAB=xBABxCBxxAB=xAB
27 sseq2 x=yBxBy
28 ineq1 x=yxA=yA
29 28 oveq1d x=yxAB=yAB
30 ineq1 x=yxAB=yAB
31 29 30 eqeq12d x=yxAB=xAByAB=yAB
32 27 31 imbi12d x=yBxxAB=xABByyAB=yAB
33 32 cbvralvw xCBxxAB=xAByCByyAB=yAB
34 26 33 imbitrdi BCxCxBAB=xBAByCByyAB=yAB
35 16 34 impbid BCyCByyAB=yABxCxBAB=xBAB
36 35 adantl ACBCyCByyAB=yABxCxBAB=xBAB
37 1 36 bitrd ACBCA𝑀*BxCxBAB=xBAB