Description: Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dmdbr3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdbr | |
|
2 | chub2 | |
|
3 | 2 | ancoms | |
4 | chjcl | |
|
5 | sseq2 | |
|
6 | ineq1 | |
|
7 | 6 | oveq1d | |
8 | ineq1 | |
|
9 | 7 8 | eqeq12d | |
10 | 5 9 | imbi12d | |
11 | 10 | rspcv | |
12 | 4 11 | syl | |
13 | 3 12 | mpid | |
14 | 13 | ex | |
15 | 14 | com3l | |
16 | 15 | ralrimdv | |
17 | chlejb2 | |
|
18 | 17 | biimpa | |
19 | 18 | ineq1d | |
20 | 19 | oveq1d | |
21 | 18 | ineq1d | |
22 | 20 21 | eqeq12d | |
23 | 22 | biimpd | |
24 | 23 | ex | |
25 | 24 | com23 | |
26 | 25 | ralimdva | |
27 | sseq2 | |
|
28 | ineq1 | |
|
29 | 28 | oveq1d | |
30 | ineq1 | |
|
31 | 29 30 | eqeq12d | |
32 | 27 31 | imbi12d | |
33 | 32 | cbvralvw | |
34 | 26 33 | imbitrdi | |
35 | 16 34 | impbid | |
36 | 35 | adantl | |
37 | 1 36 | bitrd | |