Metamath Proof Explorer


Theorem dnicn

Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypothesis dnicn.1 T=xx+12x
Assertion dnicn T:cn

Proof

Step Hyp Ref Expression
1 dnicn.1 T=xx+12x
2 1 dnif T:
3 simpr ye+e+
4 simplr ye+zzy<ez
5 1 4 dnicld2 ye+zzy<eTz
6 simplll ye+zzy<ey
7 1 6 dnicld2 ye+zzy<eTy
8 5 7 resubcld ye+zzy<eTzTy
9 8 recnd ye+zzy<eTzTy
10 9 abscld ye+zzy<eTzTy
11 4 6 resubcld ye+zzy<ezy
12 11 recnd ye+zzy<ezy
13 12 abscld ye+zzy<ezy
14 3 ad2antrr ye+zzy<ee+
15 14 rpred ye+zzy<ee
16 1 6 4 dnibnd ye+zzy<eTzTyzy
17 simpr ye+zzy<ezy<e
18 10 13 15 16 17 lelttrd ye+zzy<eTzTy<e
19 18 ex ye+zzy<eTzTy<e
20 19 ralrimiva ye+zzy<eTzTy<e
21 breq2 d=ezy<dzy<e
22 21 rspceaimv e+zzy<eTzTy<ed+zzy<dTzTy<e
23 3 20 22 syl2anc ye+d+zzy<dTzTy<e
24 23 rgen2 ye+d+zzy<dTzTy<e
25 ax-resscn
26 elcncf2 T:cnT:ye+d+zzy<dTzTy<e
27 25 25 26 mp2an T:cnT:ye+d+zzy<dTzTy<e
28 2 24 27 mpbir2an T:cn