Metamath Proof Explorer


Theorem dnnumch1

Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection.EDITORIAL: overlaps dfac8a . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F=recszVGAranz
dnnumch.a φAV
dnnumch.g φy𝒫AyGyy
Assertion dnnumch1 φxOnFx:x1-1 ontoA

Proof

Step Hyp Ref Expression
1 dnnumch.f F=recszVGAranz
2 dnnumch.a φAV
3 dnnumch.g φy𝒫AyGyy
4 recsval xOnrecszVGAranzx=zVGAranzrecszVGAranzx
5 1 fveq1i Fx=recszVGAranzx
6 1 tfr1 FFnOn
7 fnfun FFnOnFunF
8 6 7 ax-mp FunF
9 vex xV
10 resfunexg FunFxVFxV
11 8 9 10 mp2an FxV
12 rneq w=Fxranw=ranFx
13 df-ima Fx=ranFx
14 12 13 eqtr4di w=Fxranw=Fx
15 14 difeq2d w=FxAranw=AFx
16 15 fveq2d w=FxGAranw=GAFx
17 rneq z=wranz=ranw
18 17 difeq2d z=wAranz=Aranw
19 18 fveq2d z=wGAranz=GAranw
20 19 cbvmptv zVGAranz=wVGAranw
21 fvex GAFxV
22 16 20 21 fvmpt FxVzVGAranzFx=GAFx
23 11 22 ax-mp zVGAranzFx=GAFx
24 1 reseq1i Fx=recszVGAranzx
25 24 fveq2i zVGAranzFx=zVGAranzrecszVGAranzx
26 23 25 eqtr3i GAFx=zVGAranzrecszVGAranzx
27 4 5 26 3eqtr4g xOnFx=GAFx
28 27 ad2antlr φxOnAFxFx=GAFx
29 difss AFxA
30 elpw2g AVAFx𝒫AAFxA
31 2 30 syl φAFx𝒫AAFxA
32 29 31 mpbiri φAFx𝒫A
33 neeq1 y=AFxyAFx
34 fveq2 y=AFxGy=GAFx
35 id y=AFxy=AFx
36 34 35 eleq12d y=AFxGyyGAFxAFx
37 33 36 imbi12d y=AFxyGyyAFxGAFxAFx
38 37 rspcva AFx𝒫Ay𝒫AyGyyAFxGAFxAFx
39 32 3 38 syl2anc φAFxGAFxAFx
40 39 adantr φxOnAFxGAFxAFx
41 40 imp φxOnAFxGAFxAFx
42 28 41 eqeltrd φxOnAFxFxAFx
43 42 ex φxOnAFxFxAFx
44 43 ralrimiva φxOnAFxFxAFx
45 6 tz7.49c AVxOnAFxFxAFxxOnFx:x1-1 ontoA
46 2 44 45 syl2anc φxOnFx:x1-1 ontoA