Metamath Proof Explorer


Theorem docaffvalN

Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docaval.j ˙=joinK
docaval.m ˙=meetK
docaval.o ˙=ocK
docaval.h H=LHypK
Assertion docaffvalN KVocAK=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w

Proof

Step Hyp Ref Expression
1 docaval.j ˙=joinK
2 docaval.m ˙=meetK
3 docaval.o ˙=ocK
4 docaval.h H=LHypK
5 elex KVKV
6 fveq2 k=KLHypk=LHypK
7 6 4 eqtr4di k=KLHypk=H
8 fveq2 k=KLTrnk=LTrnK
9 8 fveq1d k=KLTrnkw=LTrnKw
10 9 pweqd k=K𝒫LTrnkw=𝒫LTrnKw
11 fveq2 k=KDIsoAk=DIsoAK
12 11 fveq1d k=KDIsoAkw=DIsoAKw
13 fveq2 k=Kmeetk=meetK
14 13 2 eqtr4di k=Kmeetk=˙
15 fveq2 k=Kjoink=joinK
16 15 1 eqtr4di k=Kjoink=˙
17 fveq2 k=Kock=ocK
18 17 3 eqtr4di k=Kock=˙
19 12 cnveqd k=KDIsoAkw-1=DIsoAKw-1
20 12 rneqd k=KranDIsoAkw=ranDIsoAKw
21 20 rabeqdv k=KzranDIsoAkw|xz=zranDIsoAKw|xz
22 21 inteqd k=KzranDIsoAkw|xz=zranDIsoAKw|xz
23 19 22 fveq12d k=KDIsoAkw-1zranDIsoAkw|xz=DIsoAKw-1zranDIsoAKw|xz
24 18 23 fveq12d k=KockDIsoAkw-1zranDIsoAkw|xz=˙DIsoAKw-1zranDIsoAKw|xz
25 18 fveq1d k=Kockw=˙w
26 16 24 25 oveq123d k=KockDIsoAkw-1zranDIsoAkw|xzjoinkockw=˙DIsoAKw-1zranDIsoAKw|xz˙˙w
27 eqidd k=Kw=w
28 14 26 27 oveq123d k=KockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw=˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
29 12 28 fveq12d k=KDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw=DIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
30 10 29 mpteq12dv k=Kx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw=x𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
31 7 30 mpteq12dv k=KwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
32 df-docaN ocA=kVwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
33 31 32 4 mptfvmpt KVocAK=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
34 5 33 syl KVocAK=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w