Metamath Proof Explorer


Theorem docavalN

Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docaval.j ˙=joinK
docaval.m ˙=meetK
docaval.o ˙=ocK
docaval.h H=LHypK
docaval.t T=LTrnKW
docaval.i I=DIsoAKW
docaval.n N=ocAKW
Assertion docavalN KHLWHXTNX=I˙I-1zranI|Xz˙˙W˙W

Proof

Step Hyp Ref Expression
1 docaval.j ˙=joinK
2 docaval.m ˙=meetK
3 docaval.o ˙=ocK
4 docaval.h H=LHypK
5 docaval.t T=LTrnKW
6 docaval.i I=DIsoAKW
7 docaval.n N=ocAKW
8 1 2 3 4 5 6 7 docafvalN KHLWHN=x𝒫TI˙I-1zranI|xz˙˙W˙W
9 8 adantr KHLWHXTN=x𝒫TI˙I-1zranI|xz˙˙W˙W
10 9 fveq1d KHLWHXTNX=x𝒫TI˙I-1zranI|xz˙˙W˙WX
11 5 fvexi TV
12 11 elpw2 X𝒫TXT
13 12 biimpri XTX𝒫T
14 13 adantl KHLWHXTX𝒫T
15 fvex I˙I-1zranI|Xz˙˙W˙WV
16 sseq1 x=XxzXz
17 16 rabbidv x=XzranI|xz=zranI|Xz
18 17 inteqd x=XzranI|xz=zranI|Xz
19 18 fveq2d x=XI-1zranI|xz=I-1zranI|Xz
20 19 fveq2d x=X˙I-1zranI|xz=˙I-1zranI|Xz
21 20 oveq1d x=X˙I-1zranI|xz˙˙W=˙I-1zranI|Xz˙˙W
22 21 fvoveq1d x=XI˙I-1zranI|xz˙˙W˙W=I˙I-1zranI|Xz˙˙W˙W
23 eqid x𝒫TI˙I-1zranI|xz˙˙W˙W=x𝒫TI˙I-1zranI|xz˙˙W˙W
24 22 23 fvmptg X𝒫TI˙I-1zranI|Xz˙˙W˙WVx𝒫TI˙I-1zranI|xz˙˙W˙WX=I˙I-1zranI|Xz˙˙W˙W
25 14 15 24 sylancl KHLWHXTx𝒫TI˙I-1zranI|xz˙˙W˙WX=I˙I-1zranI|Xz˙˙W˙W
26 10 25 eqtrd KHLWHXTNX=I˙I-1zranI|Xz˙˙W˙W