Description: Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | doch0.h | |
|
doch0.u | |
||
doch0.o | |
||
doch0.v | |
||
doch0.z | |
||
Assertion | doch0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doch0.h | |
|
2 | doch0.u | |
|
3 | doch0.o | |
|
4 | doch0.v | |
|
5 | doch0.z | |
|
6 | eqid | |
|
7 | 1 6 2 5 | dih0rn | |
8 | eqid | |
|
9 | 8 1 6 3 | dochvalr | |
10 | 7 9 | mpdan | |
11 | eqid | |
|
12 | 1 11 6 2 5 | dih0cnv | |
13 | 12 | fveq2d | |
14 | hlop | |
|
15 | 14 | adantr | |
16 | eqid | |
|
17 | 11 16 8 | opoc0 | |
18 | 15 17 | syl | |
19 | 13 18 | eqtrd | |
20 | 19 | fveq2d | |
21 | 16 1 6 2 4 | dih1 | |
22 | 20 21 | eqtrd | |
23 | 10 22 | eqtrd | |