Metamath Proof Explorer


Theorem doch0

Description: Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses doch0.h H=LHypK
doch0.u U=DVecHKW
doch0.o ˙=ocHKW
doch0.v V=BaseU
doch0.z 0˙=0U
Assertion doch0 KHLWH˙0˙=V

Proof

Step Hyp Ref Expression
1 doch0.h H=LHypK
2 doch0.u U=DVecHKW
3 doch0.o ˙=ocHKW
4 doch0.v V=BaseU
5 doch0.z 0˙=0U
6 eqid DIsoHKW=DIsoHKW
7 1 6 2 5 dih0rn KHLWH0˙ranDIsoHKW
8 eqid ocK=ocK
9 8 1 6 3 dochvalr KHLWH0˙ranDIsoHKW˙0˙=DIsoHKWocKDIsoHKW-10˙
10 7 9 mpdan KHLWH˙0˙=DIsoHKWocKDIsoHKW-10˙
11 eqid 0.K=0.K
12 1 11 6 2 5 dih0cnv KHLWHDIsoHKW-10˙=0.K
13 12 fveq2d KHLWHocKDIsoHKW-10˙=ocK0.K
14 hlop KHLKOP
15 14 adantr KHLWHKOP
16 eqid 1.K=1.K
17 11 16 8 opoc0 KOPocK0.K=1.K
18 15 17 syl KHLWHocK0.K=1.K
19 13 18 eqtrd KHLWHocKDIsoHKW-10˙=1.K
20 19 fveq2d KHLWHDIsoHKWocKDIsoHKW-10˙=DIsoHKW1.K
21 16 1 6 2 4 dih1 KHLWHDIsoHKW1.K=V
22 20 21 eqtrd KHLWHDIsoHKWocKDIsoHKW-10˙=V
23 10 22 eqtrd KHLWH˙0˙=V