Metamath Proof Explorer


Theorem dochdmm1

Description: De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015)

Ref Expression
Hypotheses dochdmm1.h H=LHypK
dochdmm1.i I=DIsoHKW
dochdmm1.u U=DVecHKW
dochdmm1.v V=BaseU
dochdmm1.o ˙=ocHKW
dochdmm1.j ˙=joinHKW
dochdmm1.k φKHLWH
dochdmm1.x φXranI
dochdmm1.y φYranI
Assertion dochdmm1 φ˙XY=˙X˙˙Y

Proof

Step Hyp Ref Expression
1 dochdmm1.h H=LHypK
2 dochdmm1.i I=DIsoHKW
3 dochdmm1.u U=DVecHKW
4 dochdmm1.v V=BaseU
5 dochdmm1.o ˙=ocHKW
6 dochdmm1.j ˙=joinHKW
7 dochdmm1.k φKHLWH
8 dochdmm1.x φXranI
9 dochdmm1.y φYranI
10 1 3 2 4 dihrnss KHLWHXranIXV
11 7 8 10 syl2anc φXV
12 1 3 4 5 dochssv KHLWHXV˙XV
13 7 11 12 syl2anc φ˙XV
14 1 3 2 4 dihrnss KHLWHYranIYV
15 7 9 14 syl2anc φYV
16 1 3 4 5 dochssv KHLWHYV˙YV
17 7 15 16 syl2anc φ˙YV
18 1 3 4 5 dochdmj1 KHLWH˙XV˙YV˙˙X˙Y=˙˙X˙˙Y
19 7 13 17 18 syl3anc φ˙˙X˙Y=˙˙X˙˙Y
20 1 2 5 dochoc KHLWHXranI˙˙X=X
21 7 8 20 syl2anc φ˙˙X=X
22 1 2 5 dochoc KHLWHYranI˙˙Y=Y
23 7 9 22 syl2anc φ˙˙Y=Y
24 21 23 ineq12d φ˙˙X˙˙Y=XY
25 19 24 eqtr2d φXY=˙˙X˙Y
26 25 fveq2d φ˙XY=˙˙˙X˙Y
27 1 3 4 5 6 djhval2 KHLWH˙XV˙YV˙X˙˙Y=˙˙˙X˙Y
28 7 13 17 27 syl3anc φ˙X˙˙Y=˙˙˙X˙Y
29 26 28 eqtr4d φ˙XY=˙X˙˙Y