Metamath Proof Explorer


Theorem djhexmid

Description: Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses djhexmid.h H = LHyp K
djhexmid.u U = DVecH K W
djhexmid.v V = Base U
djhexmid.o ˙ = ocH K W
djhexmid.j ˙ = joinH K W
Assertion djhexmid K HL W H X V X ˙ ˙ X = V

Proof

Step Hyp Ref Expression
1 djhexmid.h H = LHyp K
2 djhexmid.u U = DVecH K W
3 djhexmid.v V = Base U
4 djhexmid.o ˙ = ocH K W
5 djhexmid.j ˙ = joinH K W
6 simpl K HL W H X V K HL W H
7 simpr K HL W H X V X V
8 1 2 3 4 dochssv K HL W H X V ˙ X V
9 1 2 3 4 5 djhval K HL W H X V ˙ X V X ˙ ˙ X = ˙ ˙ X ˙ ˙ X
10 6 7 8 9 syl12anc K HL W H X V X ˙ ˙ X = ˙ ˙ X ˙ ˙ X
11 eqid LSubSp U = LSubSp U
12 1 2 3 11 4 dochlss K HL W H X V ˙ X LSubSp U
13 eqid 0 U = 0 U
14 1 2 11 13 4 dochnoncon K HL W H ˙ X LSubSp U ˙ X ˙ ˙ X = 0 U
15 12 14 syldan K HL W H X V ˙ X ˙ ˙ X = 0 U
16 1 2 4 3 13 doch1 K HL W H ˙ V = 0 U
17 16 adantr K HL W H X V ˙ V = 0 U
18 15 17 eqtr4d K HL W H X V ˙ X ˙ ˙ X = ˙ V
19 18 fveq2d K HL W H X V ˙ ˙ X ˙ ˙ X = ˙ ˙ V
20 eqid DIsoH K W = DIsoH K W
21 1 20 2 3 dih1rn K HL W H V ran DIsoH K W
22 21 adantr K HL W H X V V ran DIsoH K W
23 1 20 4 dochoc K HL W H V ran DIsoH K W ˙ ˙ V = V
24 22 23 syldan K HL W H X V ˙ ˙ V = V
25 10 19 24 3eqtrd K HL W H X V X ˙ ˙ X = V