Metamath Proof Explorer


Theorem dochffval

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochval.b B=BaseK
dochval.g G=glbK
dochval.o ˙=ocK
dochval.h H=LHypK
Assertion dochffval KVocHK=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy

Proof

Step Hyp Ref Expression
1 dochval.b B=BaseK
2 dochval.g G=glbK
3 dochval.o ˙=ocK
4 dochval.h H=LHypK
5 elex KVKV
6 fveq2 k=KLHypk=LHypK
7 6 4 eqtr4di k=KLHypk=H
8 fveq2 k=KDVecHk=DVecHK
9 8 fveq1d k=KDVecHkw=DVecHKw
10 9 fveq2d k=KBaseDVecHkw=BaseDVecHKw
11 10 pweqd k=K𝒫BaseDVecHkw=𝒫BaseDVecHKw
12 fveq2 k=KDIsoHk=DIsoHK
13 12 fveq1d k=KDIsoHkw=DIsoHKw
14 fveq2 k=Kock=ocK
15 14 3 eqtr4di k=Kock=˙
16 fveq2 k=Kglbk=glbK
17 16 2 eqtr4di k=Kglbk=G
18 fveq2 k=KBasek=BaseK
19 18 1 eqtr4di k=KBasek=B
20 13 fveq1d k=KDIsoHkwy=DIsoHKwy
21 20 sseq2d k=KxDIsoHkwyxDIsoHKwy
22 19 21 rabeqbidv k=KyBasek|xDIsoHkwy=yB|xDIsoHKwy
23 17 22 fveq12d k=KglbkyBasek|xDIsoHkwy=GyB|xDIsoHKwy
24 15 23 fveq12d k=KockglbkyBasek|xDIsoHkwy=˙GyB|xDIsoHKwy
25 13 24 fveq12d k=KDIsoHkwockglbkyBasek|xDIsoHkwy=DIsoHKw˙GyB|xDIsoHKwy
26 11 25 mpteq12dv k=Kx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy=x𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy
27 7 26 mpteq12dv k=KwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy
28 df-doch ocH=kVwLHypkx𝒫BaseDVecHkwDIsoHkwockglbkyBasek|xDIsoHkwy
29 27 28 4 mptfvmpt KVocHK=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy
30 5 29 syl KVocHK=wHx𝒫BaseDVecHKwDIsoHKw˙GyB|xDIsoHKwy