Metamath Proof Explorer


Theorem dochkrshp

Description: The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses dochkrshp.h H=LHypK
dochkrshp.o ˙=ocHKW
dochkrshp.u U=DVecHKW
dochkrshp.v V=BaseU
dochkrshp.y Y=LSHypU
dochkrshp.f F=LFnlU
dochkrshp.l L=LKerU
dochkrshp.k φKHLWH
dochkrshp.g φGF
Assertion dochkrshp φ˙˙LGV˙˙LGY

Proof

Step Hyp Ref Expression
1 dochkrshp.h H=LHypK
2 dochkrshp.o ˙=ocHKW
3 dochkrshp.u U=DVecHKW
4 dochkrshp.v V=BaseU
5 dochkrshp.y Y=LSHypU
6 dochkrshp.f F=LFnlU
7 dochkrshp.l L=LKerU
8 dochkrshp.k φKHLWH
9 dochkrshp.g φGF
10 simpr φ˙˙LGLG˙˙LGLG
11 8 adantr φ˙˙LGLGKHLWH
12 2fveq3 LG=V˙˙LG=˙˙V
13 1 3 2 4 8 dochoc1 φ˙˙V=V
14 12 13 sylan9eqr φLG=V˙˙LG=V
15 simpr φLG=VLG=V
16 14 15 eqtr4d φLG=V˙˙LG=LG
17 16 ex φLG=V˙˙LG=LG
18 17 necon3d φ˙˙LGLGLGV
19 df-ne LGV¬LG=V
20 1 3 8 dvhlvec φULVec
21 4 5 6 7 20 9 lkrshpor φLGYLG=V
22 21 orcomd φLG=VLGY
23 22 ord φ¬LG=VLGY
24 19 23 biimtrid φLGVLGY
25 18 24 syld φ˙˙LGLGLGY
26 25 imp φ˙˙LGLGLGY
27 1 2 3 4 5 11 26 dochshpncl φ˙˙LGLG˙˙LGLG˙˙LG=V
28 10 27 mpbid φ˙˙LGLG˙˙LG=V
29 28 ex φ˙˙LGLG˙˙LG=V
30 29 necon1d φ˙˙LGV˙˙LG=LG
31 14 ex φLG=V˙˙LG=V
32 31 necon3ad φ˙˙LGV¬LG=V
33 32 23 syld φ˙˙LGVLGY
34 30 33 jcad φ˙˙LGV˙˙LG=LGLGY
35 1 2 3 6 5 7 8 9 dochlkr φ˙˙LGY˙˙LG=LGLGY
36 34 35 sylibrd φ˙˙LGV˙˙LGY
37 1 3 8 dvhlmod φULMod
38 37 adantr φ˙˙LGYULMod
39 simpr φ˙˙LGY˙˙LGY
40 4 5 38 39 lshpne φ˙˙LGY˙˙LGV
41 40 ex φ˙˙LGY˙˙LGV
42 36 41 impbid φ˙˙LGV˙˙LGY