Metamath Proof Explorer


Theorem dvaddf

Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvaddf.s φ S
dvaddf.f φ F : X
dvaddf.g φ G : X
dvaddf.df φ dom F S = X
dvaddf.dg φ dom G S = X
Assertion dvaddf φ S D F + f G = F S + f G S

Proof

Step Hyp Ref Expression
1 dvaddf.s φ S
2 dvaddf.f φ F : X
3 dvaddf.g φ G : X
4 dvaddf.df φ dom F S = X
5 dvaddf.dg φ dom G S = X
6 dvbsss dom F S S
7 4 6 eqsstrrdi φ X S
8 1 7 ssexd φ X V
9 dvfg S F S : dom F S
10 1 9 syl φ F S : dom F S
11 4 feq2d φ F S : dom F S F S : X
12 10 11 mpbid φ F S : X
13 12 ffnd φ F S Fn X
14 dvfg S G S : dom G S
15 1 14 syl φ G S : dom G S
16 5 feq2d φ G S : dom G S G S : X
17 15 16 mpbid φ G S : X
18 17 ffnd φ G S Fn X
19 dvfg S F + f G S : dom F + f G S
20 1 19 syl φ F + f G S : dom F + f G S
21 recnprss S S
22 1 21 syl φ S
23 addcl x y x + y
24 23 adantl φ x y x + y
25 inidm X X = X
26 24 2 3 8 8 25 off φ F + f G : X
27 22 26 7 dvbss φ dom F + f G S X
28 2 adantr φ x X F : X
29 7 adantr φ x X X S
30 3 adantr φ x X G : X
31 22 adantr φ x X S
32 fvexd φ x X F S x V
33 fvexd φ x X G S x V
34 4 eleq2d φ x dom F S x X
35 34 biimpar φ x X x dom F S
36 1 adantr φ x X S
37 ffun F S : dom F S Fun F S
38 funfvbrb Fun F S x dom F S x F S F S x
39 36 9 37 38 4syl φ x X x dom F S x F S F S x
40 35 39 mpbid φ x X x F S F S x
41 5 eleq2d φ x dom G S x X
42 41 biimpar φ x X x dom G S
43 ffun G S : dom G S Fun G S
44 funfvbrb Fun G S x dom G S x G S G S x
45 36 14 43 44 4syl φ x X x dom G S x G S G S x
46 42 45 mpbid φ x X x G S G S x
47 eqid TopOpen fld = TopOpen fld
48 28 29 30 29 31 32 33 40 46 47 dvaddbr φ x X x F + f G S F S x + G S x
49 reldv Rel F + f G S
50 49 releldmi x F + f G S F S x + G S x x dom F + f G S
51 48 50 syl φ x X x dom F + f G S
52 27 51 eqelssd φ dom F + f G S = X
53 52 feq2d φ F + f G S : dom F + f G S F + f G S : X
54 20 53 mpbid φ F + f G S : X
55 54 ffnd φ F + f G S Fn X
56 eqidd φ x X F S x = F S x
57 eqidd φ x X G S x = G S x
58 28 29 30 29 36 35 42 dvadd φ x X F + f G S x = F S x + G S x
59 58 eqcomd φ x X F S x + G S x = F + f G S x
60 8 13 18 55 56 57 59 offveq φ F S + f G S = S D F + f G
61 60 eqcomd φ S D F + f G = F S + f G S