| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcnv.j |  | 
						
							| 2 |  | dvcnv.k |  | 
						
							| 3 |  | dvcnv.s |  | 
						
							| 4 |  | dvcnv.y |  | 
						
							| 5 |  | dvcnv.f |  | 
						
							| 6 |  | dvcnv.i |  | 
						
							| 7 |  | dvcnv.d |  | 
						
							| 8 |  | dvcnv.z |  | 
						
							| 9 |  | dvfg |  | 
						
							| 10 | 3 9 | syl |  | 
						
							| 11 |  | recnprss |  | 
						
							| 12 | 3 11 | syl |  | 
						
							| 13 |  | f1ocnv |  | 
						
							| 14 |  | f1of |  | 
						
							| 15 | 5 13 14 | 3syl |  | 
						
							| 16 |  | dvbsss |  | 
						
							| 17 | 7 16 | eqsstrrdi |  | 
						
							| 18 | 17 12 | sstrd |  | 
						
							| 19 | 15 18 | fssd |  | 
						
							| 20 | 1 | cnfldtopon |  | 
						
							| 21 |  | resttopon |  | 
						
							| 22 | 20 12 21 | sylancr |  | 
						
							| 23 | 2 22 | eqeltrid |  | 
						
							| 24 |  | toponss |  | 
						
							| 25 | 23 4 24 | syl2anc |  | 
						
							| 26 | 12 19 25 | dvbss |  | 
						
							| 27 |  | f1ocnvfv2 |  | 
						
							| 28 | 5 27 | sylan |  | 
						
							| 29 | 3 | adantr |  | 
						
							| 30 | 4 | adantr |  | 
						
							| 31 | 5 | adantr |  | 
						
							| 32 | 6 | adantr |  | 
						
							| 33 | 7 | adantr |  | 
						
							| 34 | 8 | adantr |  | 
						
							| 35 | 15 | ffvelcdmda |  | 
						
							| 36 | 1 2 29 30 31 32 33 34 35 | dvcnvlem |  | 
						
							| 37 | 28 36 | eqbrtrrd |  | 
						
							| 38 |  | reldv |  | 
						
							| 39 | 38 | releldmi |  | 
						
							| 40 | 37 39 | syl |  | 
						
							| 41 | 26 40 | eqelssd |  | 
						
							| 42 | 41 | feq2d |  | 
						
							| 43 | 10 42 | mpbid |  | 
						
							| 44 | 43 | feqmptd |  | 
						
							| 45 | 10 | adantr |  | 
						
							| 46 | 45 | ffund |  | 
						
							| 47 |  | funbrfv |  | 
						
							| 48 | 46 37 47 | sylc |  | 
						
							| 49 | 48 | mpteq2dva |  | 
						
							| 50 | 44 49 | eqtrd |  |