| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  | 
						
							| 2 |  | nnz |  | 
						
							| 3 |  | nnnn0 |  | 
						
							| 4 |  | dvdsexpim |  | 
						
							| 5 | 1 2 3 4 | syl3an |  | 
						
							| 6 |  | gcdnncl |  | 
						
							| 7 | 6 | nnrpd |  | 
						
							| 8 | 7 | 3adant3 |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | simpl1 |  | 
						
							| 11 | 10 | nnrpd |  | 
						
							| 12 |  | simpl3 |  | 
						
							| 13 |  | expgcd |  | 
						
							| 14 | 3 13 | syl3an3 |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | simp1 |  | 
						
							| 17 | 3 | 3ad2ant3 |  | 
						
							| 18 | 16 17 | nnexpcld |  | 
						
							| 19 |  | simp2 |  | 
						
							| 20 | 19 17 | nnexpcld |  | 
						
							| 21 |  | gcdeq |  | 
						
							| 22 | 18 20 21 | syl2anc |  | 
						
							| 23 | 22 | biimpar |  | 
						
							| 24 | 15 23 | eqtrd |  | 
						
							| 25 | 9 11 12 24 | exp11nnd |  | 
						
							| 26 |  | gcddvds |  | 
						
							| 27 | 26 | simprd |  | 
						
							| 28 | 1 2 27 | syl2an |  | 
						
							| 29 | 28 | 3adant3 |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 25 30 | eqbrtrrd |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 5 32 | impbid |  |