Metamath Proof Explorer


Theorem dvdsrval

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses dvdsr.1 B=BaseR
dvdsr.2 ˙=rR
dvdsr.3 ·˙=R
Assertion dvdsrval ˙=xy|xBzBz·˙x=y

Proof

Step Hyp Ref Expression
1 dvdsr.1 B=BaseR
2 dvdsr.2 ˙=rR
3 dvdsr.3 ·˙=R
4 fveq2 r=RBaser=BaseR
5 4 1 eqtr4di r=RBaser=B
6 5 eleq2d r=RxBaserxB
7 5 rexeqdv r=RzBaserzrx=yzBzrx=y
8 6 7 anbi12d r=RxBaserzBaserzrx=yxBzBzrx=y
9 fveq2 r=Rr=R
10 9 3 eqtr4di r=Rr=·˙
11 10 oveqd r=Rzrx=z·˙x
12 11 eqeq1d r=Rzrx=yz·˙x=y
13 12 rexbidv r=RzBzrx=yzBz·˙x=y
14 13 anbi2d r=RxBzBzrx=yxBzBz·˙x=y
15 8 14 bitrd r=RxBaserzBaserzrx=yxBzBz·˙x=y
16 15 opabbidv r=Rxy|xBaserzBaserzrx=y=xy|xBzBz·˙x=y
17 df-dvdsr r=rVxy|xBaserzBaserzrx=y
18 1 fvexi BV
19 eqcom z·˙x=yy=z·˙x
20 19 rexbii zBz·˙x=yzBy=z·˙x
21 20 abbii y|zBz·˙x=y=y|zBy=z·˙x
22 18 abrexex y|zBy=z·˙xV
23 21 22 eqeltri y|zBz·˙x=yV
24 23 a1i xBy|zBz·˙x=yV
25 18 24 opabex3 xy|xBzBz·˙x=yV
26 16 17 25 fvmpt RVrR=xy|xBzBz·˙x=y
27 2 26 eqtrid RV˙=xy|xBzBz·˙x=y
28 fvprc ¬RVrR=
29 2 28 eqtrid ¬RV˙=
30 opabn0 xy|xBzBz·˙x=yxyxBzBz·˙x=y
31 n0i xB¬B=
32 fvprc ¬RVBaseR=
33 1 32 eqtrid ¬RVB=
34 31 33 nsyl2 xBRV
35 34 adantr xBzBz·˙x=yRV
36 35 exlimivv xyxBzBz·˙x=yRV
37 30 36 sylbi xy|xBzBz·˙x=yRV
38 37 necon1bi ¬RVxy|xBzBz·˙x=y=
39 29 38 eqtr4d ¬RV˙=xy|xBzBz·˙x=y
40 27 39 pm2.61i ˙=xy|xBzBz·˙x=y