Metamath Proof Explorer


Theorem dvdsrval

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses dvdsr.1 B = Base R
dvdsr.2 ˙ = r R
dvdsr.3 · ˙ = R
Assertion dvdsrval ˙ = x y | x B z B z · ˙ x = y

Proof

Step Hyp Ref Expression
1 dvdsr.1 B = Base R
2 dvdsr.2 ˙ = r R
3 dvdsr.3 · ˙ = R
4 fveq2 r = R Base r = Base R
5 4 1 syl6eqr r = R Base r = B
6 5 eleq2d r = R x Base r x B
7 5 rexeqdv r = R z Base r z r x = y z B z r x = y
8 6 7 anbi12d r = R x Base r z Base r z r x = y x B z B z r x = y
9 fveq2 r = R r = R
10 9 3 syl6eqr r = R r = · ˙
11 10 oveqd r = R z r x = z · ˙ x
12 11 eqeq1d r = R z r x = y z · ˙ x = y
13 12 rexbidv r = R z B z r x = y z B z · ˙ x = y
14 13 anbi2d r = R x B z B z r x = y x B z B z · ˙ x = y
15 8 14 bitrd r = R x Base r z Base r z r x = y x B z B z · ˙ x = y
16 15 opabbidv r = R x y | x Base r z Base r z r x = y = x y | x B z B z · ˙ x = y
17 df-dvdsr r = r V x y | x Base r z Base r z r x = y
18 1 fvexi B V
19 eqcom z · ˙ x = y y = z · ˙ x
20 19 rexbii z B z · ˙ x = y z B y = z · ˙ x
21 20 abbii y | z B z · ˙ x = y = y | z B y = z · ˙ x
22 18 abrexex y | z B y = z · ˙ x V
23 21 22 eqeltri y | z B z · ˙ x = y V
24 23 a1i x B y | z B z · ˙ x = y V
25 18 24 opabex3 x y | x B z B z · ˙ x = y V
26 16 17 25 fvmpt R V r R = x y | x B z B z · ˙ x = y
27 2 26 syl5eq R V ˙ = x y | x B z B z · ˙ x = y
28 fvprc ¬ R V r R =
29 2 28 syl5eq ¬ R V ˙ =
30 opabn0 x y | x B z B z · ˙ x = y x y x B z B z · ˙ x = y
31 n0i x B ¬ B =
32 fvprc ¬ R V Base R =
33 1 32 syl5eq ¬ R V B =
34 31 33 nsyl2 x B R V
35 34 adantr x B z B z · ˙ x = y R V
36 35 exlimivv x y x B z B z · ˙ x = y R V
37 30 36 sylbi x y | x B z B z · ˙ x = y R V
38 37 necon1bi ¬ R V x y | x B z B z · ˙ x = y =
39 29 38 eqtr4d ¬ R V ˙ = x y | x B z B z · ˙ x = y
40 27 39 pm2.61i ˙ = x y | x B z B z · ˙ x = y