Metamath Proof Explorer


Theorem dvferm

Description: Fermat's theorem on stationary points. A point U which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvferm.a φ F : X
dvferm.b φ X
dvferm.u φ U A B
dvferm.s φ A B X
dvferm.d φ U dom F
dvferm.r φ y A B F y F U
Assertion dvferm φ F U = 0

Proof

Step Hyp Ref Expression
1 dvferm.a φ F : X
2 dvferm.b φ X
3 dvferm.u φ U A B
4 dvferm.s φ A B X
5 dvferm.d φ U dom F
6 dvferm.r φ y A B F y F U
7 ne0i U A B A B
8 ndmioo ¬ A * B * A B =
9 8 necon1ai A B A * B *
10 3 7 9 3syl φ A * B *
11 10 simpld φ A *
12 ioossre A B
13 12 3 sseldi φ U
14 13 rexrd φ U *
15 eliooord U A B A < U U < B
16 3 15 syl φ A < U U < B
17 16 simpld φ A < U
18 11 14 17 xrltled φ A U
19 iooss1 A * A U U B A B
20 11 18 19 syl2anc φ U B A B
21 ssralv U B A B y A B F y F U y U B F y F U
22 20 6 21 sylc φ y U B F y F U
23 1 2 3 4 5 22 dvferm1 φ F U 0
24 10 simprd φ B *
25 16 simprd φ U < B
26 14 24 25 xrltled φ U B
27 iooss2 B * U B A U A B
28 24 26 27 syl2anc φ A U A B
29 ssralv A U A B y A B F y F U y A U F y F U
30 28 6 29 sylc φ y A U F y F U
31 1 2 3 4 5 30 dvferm2 φ 0 F U
32 dvfre F : X X F : dom F
33 1 2 32 syl2anc φ F : dom F
34 33 5 ffvelrnd φ F U
35 0re 0
36 letri3 F U 0 F U = 0 F U 0 0 F U
37 34 35 36 sylancl φ F U = 0 F U 0 0 F U
38 23 31 37 mpbir2and φ F U = 0