Metamath Proof Explorer


Theorem dvferm2

Description: One-sided version of dvferm . A point U which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015) (Proof shortened by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvferm.a φF:X
dvferm.b φX
dvferm.u φUAB
dvferm.s φABX
dvferm.d φUdomF
dvferm2.r φyAUFyFU
Assertion dvferm2 φ0FU

Proof

Step Hyp Ref Expression
1 dvferm.a φF:X
2 dvferm.b φX
3 dvferm.u φUAB
4 dvferm.s φABX
5 dvferm.d φUdomF
6 dvferm2.r φyAUFyFU
7 fveq2 x=zFx=Fz
8 7 oveq1d x=zFxFU=FzFU
9 oveq1 x=zxU=zU
10 8 9 oveq12d x=zFxFUxU=FzFUzU
11 eqid xXUFxFUxU=xXUFxFUxU
12 ovex FzFUzUV
13 10 11 12 fvmpt zXUxXUFxFUxUz=FzFUzU
14 13 fvoveq1d zXUxXUFxFUxUzFU=FzFUzUFU
15 id y=FUy=FU
16 14 15 breqan12rd y=FUzXUxXUFxFUxUzFU<yFzFUzUFU<FU
17 16 imbi2d y=FUzXUzUzU<uxXUFxFUxUzFU<yzUzU<uFzFUzUFU<FU
18 17 ralbidva y=FUzXUzUzU<uxXUFxFUxUzFU<yzXUzUzU<uFzFUzUFU<FU
19 18 rexbidv y=FUu+zXUzUzU<uxXUFxFUxUzFU<yu+zXUzUzU<uFzFUzUFU<FU
20 dvf F:domF
21 ffun F:domFFunF
22 funfvbrb FunFUdomFUFFU
23 20 21 22 mp2b UdomFUFFU
24 5 23 sylib φUFFU
25 eqid TopOpenfld𝑡=TopOpenfld𝑡
26 eqid TopOpenfld=TopOpenfld
27 ax-resscn
28 27 a1i φ
29 fss F:XF:X
30 1 27 29 sylancl φF:X
31 25 26 11 28 30 2 eldv φUFFUUintTopOpenfld𝑡XFUxXUFxFUxUlimU
32 24 31 mpbid φUintTopOpenfld𝑡XFUxXUFxFUxUlimU
33 32 simprd φFUxXUFxFUxUlimU
34 33 adantr φFU<0FUxXUFxFUxUlimU
35 2 27 sstrdi φX
36 4 3 sseldd φUX
37 30 35 36 dvlem φxXUFxFUxU
38 37 fmpttd φxXUFxFUxU:XU
39 38 adantr φFU<0xXUFxFUxU:XU
40 35 adantr φFU<0X
41 40 ssdifssd φFU<0XU
42 35 36 sseldd φU
43 42 adantr φFU<0U
44 39 41 43 ellimc3 φFU<0FUxXUFxFUxUlimUFUy+u+zXUzUzU<uxXUFxFUxUzFU<y
45 34 44 mpbid φFU<0FUy+u+zXUzUzU<uxXUFxFUxUzFU<y
46 45 simprd φFU<0y+u+zXUzUzU<uxXUFxFUxUzFU<y
47 dvfre F:XXF:domF
48 1 2 47 syl2anc φF:domF
49 48 5 ffvelcdmd φFU
50 49 adantr φFU<0FU
51 50 renegcld φFU<0FU
52 49 lt0neg1d φFU<00<FU
53 52 biimpa φFU<00<FU
54 51 53 elrpd φFU<0FU+
55 19 46 54 rspcdva φFU<0u+zXUzUzU<uFzFUzUFU<FU
56 1 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUF:X
57 2 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUX
58 3 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUUAB
59 4 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUABX
60 5 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUUdomF
61 6 ad3antrrr φFU<0u+zXUzUzU<uFzFUzUFU<FUyAUFyFU
62 simpllr φFU<0u+zXUzUzU<uFzFUzUFU<FUFU<0
63 simplr φFU<0u+zXUzUzU<uFzFUzUFU<FUu+
64 simpr φFU<0u+zXUzUzU<uFzFUzUFU<FUzXUzUzU<uFzFUzUFU<FU
65 eqid ifAUuUuA+U2=ifAUuUuA+U2
66 56 57 58 59 60 61 62 63 64 65 dvferm2lem ¬φFU<0u+zXUzUzU<uFzFUzUFU<FU
67 66 imnani φFU<0u+¬zXUzUzU<uFzFUzUFU<FU
68 67 nrexdv φFU<0¬u+zXUzUzU<uFzFUzUFU<FU
69 55 68 pm2.65da φ¬FU<0
70 0re 0
71 lenlt 0FU0FU¬FU<0
72 70 49 71 sylancr φ0FU¬FU<0
73 69 72 mpbird φ0FU