Metamath Proof Explorer


Theorem dvferm2lem

Description: Lemma for dvferm . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvferm.a φ F : X
dvferm.b φ X
dvferm.u φ U A B
dvferm.s φ A B X
dvferm.d φ U dom F
dvferm2.r φ y A U F y F U
dvferm2.z φ F U < 0
dvferm2.t φ T +
dvferm2.l φ z X U z U z U < T F z F U z U F U < F U
dvferm2.x S = if A U T U T A + U 2
Assertion dvferm2lem ¬ φ

Proof

Step Hyp Ref Expression
1 dvferm.a φ F : X
2 dvferm.b φ X
3 dvferm.u φ U A B
4 dvferm.s φ A B X
5 dvferm.d φ U dom F
6 dvferm2.r φ y A U F y F U
7 dvferm2.z φ F U < 0
8 dvferm2.t φ T +
9 dvferm2.l φ z X U z U z U < T F z F U z U F U < F U
10 dvferm2.x S = if A U T U T A + U 2
11 mnfxr −∞ *
12 11 a1i φ −∞ *
13 ioossre A B
14 13 3 sseldi φ U
15 8 rpred φ T
16 14 15 resubcld φ U T
17 16 rexrd φ U T *
18 ne0i U A B A B
19 ndmioo ¬ A * B * A B =
20 19 necon1ai A B A * B *
21 3 18 20 3syl φ A * B *
22 21 simpld φ A *
23 17 22 ifcld φ if A U T U T A *
24 14 rexrd φ U *
25 16 mnfltd φ −∞ < U T
26 xrmax2 A * U T * U T if A U T U T A
27 22 17 26 syl2anc φ U T if A U T U T A
28 12 17 23 25 27 xrltletrd φ −∞ < if A U T U T A
29 14 8 ltsubrpd φ U T < U
30 eliooord U A B A < U U < B
31 3 30 syl φ A < U U < B
32 31 simpld φ A < U
33 breq1 U T = if A U T U T A U T < U if A U T U T A < U
34 breq1 A = if A U T U T A A < U if A U T U T A < U
35 33 34 ifboth U T < U A < U if A U T U T A < U
36 29 32 35 syl2anc φ if A U T U T A < U
37 xrre2 −∞ * if A U T U T A * U * −∞ < if A U T U T A if A U T U T A < U if A U T U T A
38 12 23 24 28 36 37 syl32anc φ if A U T U T A
39 38 14 readdcld φ if A U T U T A + U
40 39 rehalfcld φ if A U T U T A + U 2
41 10 40 eqeltrid φ S
42 avglt2 if A U T U T A U if A U T U T A < U if A U T U T A + U 2 < U
43 38 14 42 syl2anc φ if A U T U T A < U if A U T U T A + U 2 < U
44 36 43 mpbid φ if A U T U T A + U 2 < U
45 10 44 eqbrtrid φ S < U
46 41 45 ltned φ S U
47 41 14 45 ltled φ S U
48 41 14 47 abssuble0d φ S U = U S
49 avglt1 if A U T U T A U if A U T U T A < U if A U T U T A < if A U T U T A + U 2
50 38 14 49 syl2anc φ if A U T U T A < U if A U T U T A < if A U T U T A + U 2
51 36 50 mpbid φ if A U T U T A < if A U T U T A + U 2
52 51 10 breqtrrdi φ if A U T U T A < S
53 16 38 41 27 52 lelttrd φ U T < S
54 14 15 41 53 ltsub23d φ U S < T
55 48 54 eqbrtrd φ S U < T
56 neeq1 z = S z U S U
57 fvoveq1 z = S z U = S U
58 57 breq1d z = S z U < T S U < T
59 56 58 anbi12d z = S z U z U < T S U S U < T
60 fveq2 z = S F z = F S
61 60 oveq1d z = S F z F U = F S F U
62 oveq1 z = S z U = S U
63 61 62 oveq12d z = S F z F U z U = F S F U S U
64 63 fvoveq1d z = S F z F U z U F U = F S F U S U F U
65 64 breq1d z = S F z F U z U F U < F U F S F U S U F U < F U
66 59 65 imbi12d z = S z U z U < T F z F U z U F U < F U S U S U < T F S F U S U F U < F U
67 21 simprd φ B *
68 31 simprd φ U < B
69 24 67 68 xrltled φ U B
70 iooss2 B * U B A U A B
71 67 69 70 syl2anc φ A U A B
72 71 4 sstrd φ A U X
73 41 rexrd φ S *
74 xrmax1 A * U T * A if A U T U T A
75 22 17 74 syl2anc φ A if A U T U T A
76 22 23 73 75 52 xrlelttrd φ A < S
77 elioo2 A * U * S A U S A < S S < U
78 22 24 77 syl2anc φ S A U S A < S S < U
79 41 76 45 78 mpbir3and φ S A U
80 72 79 sseldd φ S X
81 eldifsn S X U S X S U
82 80 46 81 sylanbrc φ S X U
83 66 9 82 rspcdva φ S U S U < T F S F U S U F U < F U
84 46 55 83 mp2and φ F S F U S U F U < F U
85 1 80 ffvelrnd φ F S
86 4 3 sseldd φ U X
87 1 86 ffvelrnd φ F U
88 85 87 resubcld φ F S F U
89 41 14 resubcld φ S U
90 41 recnd φ S
91 14 recnd φ U
92 90 91 46 subne0d φ S U 0
93 88 89 92 redivcld φ F S F U S U
94 dvfre F : X X F : dom F
95 1 2 94 syl2anc φ F : dom F
96 95 5 ffvelrnd φ F U
97 96 renegcld φ F U
98 93 96 97 absdifltd φ F S F U S U F U < F U F U F U < F S F U S U F S F U S U < F U + F U
99 84 98 mpbid φ F U F U < F S F U S U F S F U S U < F U + F U
100 99 simprd φ F S F U S U < F U + F U
101 96 recnd φ F U
102 101 negidd φ F U + F U = 0
103 100 102 breqtrd φ F S F U S U < 0
104 93 lt0neg1d φ F S F U S U < 0 0 < F S F U S U
105 103 104 mpbid φ 0 < F S F U S U
106 88 recnd φ F S F U
107 89 recnd φ S U
108 106 107 92 divneg2d φ F S F U S U = F S F U S U
109 105 108 breqtrd φ 0 < F S F U S U
110 89 renegcld φ S U
111 41 14 posdifd φ S < U 0 < U S
112 45 111 mpbid φ 0 < U S
113 90 91 negsubdi2d φ S U = U S
114 112 113 breqtrrd φ 0 < S U
115 gt0div F S F U S U 0 < S U 0 < F S F U 0 < F S F U S U
116 88 110 114 115 syl3anc φ 0 < F S F U 0 < F S F U S U
117 109 116 mpbird φ 0 < F S F U
118 87 85 posdifd φ F U < F S 0 < F S F U
119 117 118 mpbird φ F U < F S
120 fveq2 y = S F y = F S
121 120 breq1d y = S F y F U F S F U
122 121 6 79 rspcdva φ F S F U
123 85 87 122 lensymd φ ¬ F U < F S
124 119 123 pm2.65i ¬ φ