Metamath Proof Explorer


Theorem dvle2

Description: Collapsed dvle . (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses dvle2.1 φA
dvle2.2 φB
dvle2.3 φxABE:ABcn
dvle2.4 φxABG:ABcn
dvle2.5 φdxABEdx=xABF
dvle2.6 φdxABGdx=xABH
dvle2.7 φxABFH
dvle2.8 x=AE=P
dvle2.9 x=AG=Q
dvle2.10 x=BE=R
dvle2.11 x=BG=S
dvle2.12 φPQ
dvle2.13 φAB
Assertion dvle2 φRS

Proof

Step Hyp Ref Expression
1 dvle2.1 φA
2 dvle2.2 φB
3 dvle2.3 φxABE:ABcn
4 dvle2.4 φxABG:ABcn
5 dvle2.5 φdxABEdx=xABF
6 dvle2.6 φdxABGdx=xABH
7 dvle2.7 φxABFH
8 dvle2.8 x=AE=P
9 dvle2.9 x=AG=Q
10 dvle2.10 x=BE=R
11 dvle2.11 x=BG=S
12 dvle2.12 φPQ
13 dvle2.13 φAB
14 10 eleq1d x=BER
15 cncff xABE:ABcnxABE:AB
16 3 15 syl φxABE:AB
17 eqid xABE=xABE
18 17 fmpt xABExABE:AB
19 16 18 sylibr φxABE
20 2 rexrd φB*
21 2 leidd φBB
22 20 13 21 3jca φB*ABBB
23 1 rexrd φA*
24 elicc1 A*B*BABB*ABBB
25 23 20 24 syl2anc φBABB*ABBB
26 22 25 mpbird φBAB
27 14 19 26 rspcdva φR
28 8 eleq1d x=AEP
29 1 leidd φAA
30 23 29 13 3jca φA*AAAB
31 elicc1 A*B*AABA*AAAB
32 23 20 31 syl2anc φAABA*AAAB
33 30 32 mpbird φAAB
34 28 19 33 rspcdva φP
35 27 34 resubcld φRP
36 11 eleq1d x=BGS
37 cncff xABG:ABcnxABG:AB
38 4 37 syl φxABG:AB
39 eqid xABG=xABG
40 39 fmpt xABGxABG:AB
41 38 40 sylibr φxABG
42 36 41 26 rspcdva φS
43 9 eleq1d x=AGQ
44 43 41 33 rspcdva φQ
45 42 44 resubcld φSQ
46 1 2 3 5 4 6 7 33 26 13 8 9 10 11 dvle φRPSQ
47 35 34 45 44 46 12 le2addd φR-P+PS-Q+Q
48 27 recnd φR
49 34 recnd φP
50 48 49 npcand φR-P+P=R
51 42 recnd φS
52 44 recnd φQ
53 51 52 npcand φS-Q+Q=S
54 50 53 breq12d φR-P+PS-Q+QRS
55 47 54 mpbid φRS