Metamath Proof Explorer


Theorem dvlog2lem

Description: Lemma for dvlog2 . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis dvlog2.s S=1ballabs1
Assertion dvlog2lem S−∞0

Proof

Step Hyp Ref Expression
1 dvlog2.s S=1ballabs1
2 cnxmet abs∞Met
3 ax-1cn 1
4 1xr 1*
5 blssm abs∞Met11*1ballabs1
6 2 3 4 5 mp3an 1ballabs1
7 1 6 eqsstri S
8 7 sseli xSx
9 1red x−∞01
10 cnmet absMet
11 mnfxr −∞*
12 0re 0
13 iocssre −∞*0−∞0
14 11 12 13 mp2an −∞0
15 ax-resscn
16 14 15 sstri −∞0
17 16 sseli x−∞0x
18 metcl absMet1x1absx
19 10 3 17 18 mp3an12i x−∞01absx
20 1m0e1 10=1
21 14 sseli x−∞0x
22 12 a1i x−∞00
23 elioc2 −∞*0x−∞0x−∞<xx0
24 11 12 23 mp2an x−∞0x−∞<xx0
25 24 simp3bi x−∞0x0
26 21 22 9 25 lesub2dd x−∞0101x
27 20 26 eqbrtrrid x−∞011x
28 eqid abs=abs
29 28 cnmetdval 1x1absx=1x
30 3 17 29 sylancr x−∞01absx=1x
31 0le1 01
32 31 a1i x−∞001
33 21 22 9 25 32 letrd x−∞0x1
34 21 9 33 abssubge0d x−∞01x=1x
35 30 34 eqtrd x−∞01absx=1x
36 27 35 breqtrrd x−∞011absx
37 9 19 36 lensymd x−∞0¬1absx<1
38 2 a1i x−∞0abs∞Met
39 4 a1i x−∞01*
40 3 a1i x−∞01
41 elbl2 abs∞Met1*1xx1ballabs11absx<1
42 38 39 40 17 41 syl22anc x−∞0x1ballabs11absx<1
43 37 42 mtbird x−∞0¬x1ballabs1
44 43 con2i x1ballabs1¬x−∞0
45 44 1 eleq2s xS¬x−∞0
46 8 45 eldifd xSx−∞0
47 46 ssriv S−∞0