Metamath Proof Explorer


Theorem dvmptresicc

Description: Derivative of a function restricted to a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptresicc.f F=xA
dvmptresicc.a φxA
dvmptresicc.fdv φDF=xB
dvmptresicc.b φxB
dvmptresicc.c φC
dvmptresicc.d φD
Assertion dvmptresicc φdxCDAdx=xCDB

Proof

Step Hyp Ref Expression
1 dvmptresicc.f F=xA
2 dvmptresicc.a φxA
3 dvmptresicc.fdv φDF=xB
4 dvmptresicc.b φxB
5 dvmptresicc.c φC
6 dvmptresicc.d φD
7 1 reseq1i FCD=xACD
8 5 6 iccssred φCD
9 ax-resscn
10 9 a1i φ
11 8 10 sstrd φCD
12 11 resmptd φxACD=xCDA
13 7 12 eqtrid φFCD=xCDA
14 13 oveq2d φDFCD=dxCDAdx
15 8 resabs1d φFCD=FCD
16 15 eqcomd φFCD=FCD
17 16 oveq2d φDFCD=DFCD
18 2 1 fmptd φF:
19 18 10 fssresd φF:
20 ssidd φ
21 eqid TopOpenfld=TopOpenfld
22 21 tgioo2 topGenran.=TopOpenfld𝑡
23 21 22 dvres F:CDDFCD=FinttopGenran.CD
24 10 19 20 8 23 syl22anc φDFCD=FinttopGenran.CD
25 reelprrecn
26 25 a1i φ
27 ssidd φ
28 3 dmeqd φdomF=domxB
29 4 ralrimiva φxB
30 dmmptg xBdomxB=
31 29 30 syl φdomxB=
32 28 31 eqtr2d φ=domF
33 10 32 sseqtrd φdomF
34 dvres3 F:domFDF=F
35 26 18 27 33 34 syl22anc φDF=F
36 iccntr CDinttopGenran.CD=CD
37 5 6 36 syl2anc φinttopGenran.CD=CD
38 35 37 reseq12d φFinttopGenran.CD=FCD
39 ioossre CD
40 resabs1 CDFCD=FCD
41 39 40 mp1i φFCD=FCD
42 3 reseq1d φFCD=xBCD
43 ioosscn CD
44 resmpt CDxBCD=xCDB
45 43 44 mp1i φxBCD=xCDB
46 42 45 eqtrd φFCD=xCDB
47 38 41 46 3eqtrd φFinttopGenran.CD=xCDB
48 17 24 47 3eqtrd φDFCD=xCDB
49 14 48 eqtr3d φdxCDAdx=xCDB