Metamath Proof Explorer


Theorem dvn2bss

Description: An N-times differentiable point is an M-times differentiable point, if M <_ N . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion dvn2bss SF𝑝𝑚SM0NdomSDnFNdomSDnFM

Proof

Step Hyp Ref Expression
1 simp1 SF𝑝𝑚SM0NS
2 simp2 SF𝑝𝑚SM0NF𝑝𝑚S
3 elfznn0 M0NM0
4 3 3ad2ant3 SF𝑝𝑚SM0NM0
5 elfzuz3 M0NNM
6 5 3ad2ant3 SF𝑝𝑚SM0NNM
7 uznn0sub NMNM0
8 6 7 syl SF𝑝𝑚SM0NNM0
9 dvnadd SF𝑝𝑚SM0NM0SDnSDnFMNM=SDnFM+N-M
10 1 2 4 8 9 syl22anc SF𝑝𝑚SM0NSDnSDnFMNM=SDnFM+N-M
11 4 nn0cnd SF𝑝𝑚SM0NM
12 elfzuz2 M0NN0
13 12 3ad2ant3 SF𝑝𝑚SM0NN0
14 nn0uz 0=0
15 13 14 eleqtrrdi SF𝑝𝑚SM0NN0
16 15 nn0cnd SF𝑝𝑚SM0NN
17 11 16 pncan3d SF𝑝𝑚SM0NM+N-M=N
18 17 fveq2d SF𝑝𝑚SM0NSDnFM+N-M=SDnFN
19 10 18 eqtrd SF𝑝𝑚SM0NSDnSDnFMNM=SDnFN
20 19 dmeqd SF𝑝𝑚SM0NdomSDnSDnFMNM=domSDnFN
21 cnex V
22 21 a1i SF𝑝𝑚SM0NV
23 dvnf SF𝑝𝑚SM0SDnFM:domSDnFM
24 3 23 syl3an3 SF𝑝𝑚SM0NSDnFM:domSDnFM
25 dvnbss SF𝑝𝑚SM0domSDnFMdomF
26 3 25 syl3an3 SF𝑝𝑚SM0NdomSDnFMdomF
27 elpmi F𝑝𝑚SF:domFdomFS
28 27 3ad2ant2 SF𝑝𝑚SM0NF:domFdomFS
29 28 simprd SF𝑝𝑚SM0NdomFS
30 26 29 sstrd SF𝑝𝑚SM0NdomSDnFMS
31 elpm2r VSSDnFM:domSDnFMdomSDnFMSSDnFM𝑝𝑚S
32 22 1 24 30 31 syl22anc SF𝑝𝑚SM0NSDnFM𝑝𝑚S
33 dvnbss SSDnFM𝑝𝑚SNM0domSDnSDnFMNMdomSDnFM
34 1 32 8 33 syl3anc SF𝑝𝑚SM0NdomSDnSDnFMNMdomSDnFM
35 20 34 eqsstrrd SF𝑝𝑚SM0NdomSDnFNdomSDnFM