Metamath Proof Explorer


Theorem dvres3a

Description: Restriction of a complex differentiable function to the reals. This version of dvres3 assumes that F is differentiable on its domain, but does not require F to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis dvres3a.j J=TopOpenfld
Assertion dvres3a SF:AAJdomF=ASDFS=FS

Proof

Step Hyp Ref Expression
1 dvres3a.j J=TopOpenfld
2 reldv RelFSS
3 recnprss SS
4 3 ad2antrr SF:AAJdomF=AS
5 simplr SF:AAJdomF=AF:A
6 inss2 SAA
7 fssres F:ASAAFSA:SA
8 5 6 7 sylancl SF:AAJdomF=AFSA:SA
9 rescom FAS=FSA
10 resres FSA=FSA
11 9 10 eqtri FAS=FSA
12 ffn F:AFFnA
13 fnresdm FFnAFA=F
14 5 12 13 3syl SF:AAJdomF=AFA=F
15 14 reseq1d SF:AAJdomF=AFAS=FS
16 11 15 eqtr3id SF:AAJdomF=AFSA=FS
17 16 feq1d SF:AAJdomF=AFSA:SAFS:SA
18 8 17 mpbid SF:AAJdomF=AFS:SA
19 inss1 SAS
20 19 a1i SF:AAJdomF=ASAS
21 4 18 20 dvbss SF:AAJdomF=AdomFSSSA
22 dmres domFS=SdomF
23 simprr SF:AAJdomF=AdomF=A
24 23 ineq2d SF:AAJdomF=ASdomF=SA
25 22 24 eqtrid SF:AAJdomF=AdomFS=SA
26 21 25 sseqtrrd SF:AAJdomF=AdomFSSdomFS
27 relssres RelFSSdomFSSdomFSFSSdomFS=SDFS
28 2 26 27 sylancr SF:AAJdomF=AFSSdomFS=SDFS
29 dvfg SFSS:domFSS
30 29 ad2antrr SF:AAJdomF=AFSS:domFSS
31 30 ffund SF:AAJdomF=AFunFSS
32 ssidd SF:AAJdomF=A
33 1 cnfldtopon JTopOn
34 simprl SF:AAJdomF=AAJ
35 toponss JTopOnAJA
36 33 34 35 sylancr SF:AAJdomF=AA
37 dvres2 F:AASFSSDFS
38 32 5 36 4 37 syl22anc SF:AAJdomF=AFSSDFS
39 funssres FunFSSFSSDFSFSSdomFS=FS
40 31 38 39 syl2anc SF:AAJdomF=AFSSdomFS=FS
41 28 40 eqtr3d SF:AAJdomF=ASDFS=FS