Metamath Proof Explorer


Theorem dvsconst

Description: Derivative of a constant function on the real or complex numbers. The function may return a complex A even if S is RR . (Contributed by Steve Rodriguez, 11-Nov-2015)

Ref Expression
Assertion dvsconst S A S D S × A = S × 0

Proof

Step Hyp Ref Expression
1 fconst6g A × A :
2 1 anim2i S A S × A :
3 recnprss S S
4 c0ex 0 V
5 4 fconst × 0 : 0
6 5 fdmi dom × 0 =
7 3 6 sseqtrrdi S S dom × 0
8 7 adantr S A S dom × 0
9 dvconst A D × A = × 0
10 9 adantl S A D × A = × 0
11 10 dmeqd S A dom × A = dom × 0
12 8 11 sseqtrrd S A S dom × A
13 ssid
14 12 13 jctil S A S dom × A
15 dvres3 S × A : S dom × A S D × A S = × A S
16 2 14 15 syl2anc S A S D × A S = × A S
17 xpssres S × A S = S × A
18 3 17 syl S × A S = S × A
19 18 oveq2d S S D × A S = S D S × A
20 19 adantr S A S D × A S = S D S × A
21 10 reseq1d S A × A S = × 0 S
22 xpssres S × 0 S = S × 0
23 3 22 syl S × 0 S = S × 0
24 23 adantr S A × 0 S = S × 0
25 21 24 eqtrd S A × A S = S × 0
26 16 20 25 3eqtr3d S A S D S × A = S × 0