Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | efcvgfsum.1 | |
|
Assertion | efcvgfsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efcvgfsum.1 | |
|
2 | oveq2 | |
|
3 | 2 | sumeq1d | |
4 | sumex | |
|
5 | 3 1 4 | fvmpt | |
6 | 5 | adantl | |
7 | elfznn0 | |
|
8 | 7 | adantl | |
9 | eqid | |
|
10 | 9 | eftval | |
11 | 8 10 | syl | |
12 | simpr | |
|
13 | nn0uz | |
|
14 | 12 13 | eleqtrdi | |
15 | simpll | |
|
16 | eftcl | |
|
17 | 15 8 16 | syl2anc | |
18 | 11 14 17 | fsumser | |
19 | 6 18 | eqtrd | |
20 | 19 | ralrimiva | |
21 | sumex | |
|
22 | 21 1 | fnmpti | |
23 | 0z | |
|
24 | seqfn | |
|
25 | 23 24 | ax-mp | |
26 | 13 | fneq2i | |
27 | 25 26 | mpbir | |
28 | eqfnfv | |
|
29 | 22 27 28 | mp2an | |
30 | 20 29 | sylibr | |
31 | 9 | efcvg | |
32 | 30 31 | eqbrtrd | |