| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efcvgfsum.1 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 2 | sumeq1d |  | 
						
							| 4 |  | sumex |  | 
						
							| 5 | 3 1 4 | fvmpt |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | elfznn0 |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | eftval |  | 
						
							| 11 | 8 10 | syl |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | nn0uz |  | 
						
							| 14 | 12 13 | eleqtrdi |  | 
						
							| 15 |  | simpll |  | 
						
							| 16 |  | eftcl |  | 
						
							| 17 | 15 8 16 | syl2anc |  | 
						
							| 18 | 11 14 17 | fsumser |  | 
						
							| 19 | 6 18 | eqtrd |  | 
						
							| 20 | 19 | ralrimiva |  | 
						
							| 21 |  | sumex |  | 
						
							| 22 | 21 1 | fnmpti |  | 
						
							| 23 |  | 0z |  | 
						
							| 24 |  | seqfn |  | 
						
							| 25 | 23 24 | ax-mp |  | 
						
							| 26 | 13 | fneq2i |  | 
						
							| 27 | 25 26 | mpbir |  | 
						
							| 28 |  | eqfnfv |  | 
						
							| 29 | 22 27 28 | mp2an |  | 
						
							| 30 | 20 29 | sylibr |  | 
						
							| 31 | 9 | efcvg |  | 
						
							| 32 | 30 31 | eqbrtrd |  |