Metamath Proof Explorer


Theorem efcvgfsum

Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis efcvgfsum.1 F=n0k=0nAkk!
Assertion efcvgfsum AFeA

Proof

Step Hyp Ref Expression
1 efcvgfsum.1 F=n0k=0nAkk!
2 oveq2 n=j0n=0j
3 2 sumeq1d n=jk=0nAkk!=k=0jAkk!
4 sumex k=0jAkk!V
5 3 1 4 fvmpt j0Fj=k=0jAkk!
6 5 adantl Aj0Fj=k=0jAkk!
7 elfznn0 k0jk0
8 7 adantl Aj0k0jk0
9 eqid n0Ann!=n0Ann!
10 9 eftval k0n0Ann!k=Akk!
11 8 10 syl Aj0k0jn0Ann!k=Akk!
12 simpr Aj0j0
13 nn0uz 0=0
14 12 13 eleqtrdi Aj0j0
15 simpll Aj0k0jA
16 eftcl Ak0Akk!
17 15 8 16 syl2anc Aj0k0jAkk!
18 11 14 17 fsumser Aj0k=0jAkk!=seq0+n0Ann!j
19 6 18 eqtrd Aj0Fj=seq0+n0Ann!j
20 19 ralrimiva Aj0Fj=seq0+n0Ann!j
21 sumex k=0nAkk!V
22 21 1 fnmpti FFn0
23 0z 0
24 seqfn 0seq0+n0Ann!Fn0
25 23 24 ax-mp seq0+n0Ann!Fn0
26 13 fneq2i seq0+n0Ann!Fn0seq0+n0Ann!Fn0
27 25 26 mpbir seq0+n0Ann!Fn0
28 eqfnfv FFn0seq0+n0Ann!Fn0F=seq0+n0Ann!j0Fj=seq0+n0Ann!j
29 22 27 28 mp2an F=seq0+n0Ann!j0Fj=seq0+n0Ann!j
30 20 29 sylibr AF=seq0+n0Ann!
31 9 efcvg Aseq0+n0Ann!eA
32 30 31 eqbrtrd AFeA