Metamath Proof Explorer


Theorem efi4p

Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis efi4p.1 F=n0iAnn!
Assertion efi4p AeiA=1A22+iAA36+k4Fk

Proof

Step Hyp Ref Expression
1 efi4p.1 F=n0iAnn!
2 ax-icn i
3 mulcl iAiA
4 2 3 mpan AiA
5 1 ef4p iAeiA=1+iA+iA22+iA36+k4Fk
6 4 5 syl AeiA=1+iA+iA22+iA36+k4Fk
7 ax-1cn 1
8 addcl 1iA1+iA
9 7 4 8 sylancr A1+iA
10 4 sqcld AiA2
11 10 halfcld AiA22
12 3nn0 30
13 expcl iA30iA3
14 4 12 13 sylancl AiA3
15 6cn 6
16 6re 6
17 6pos 0<6
18 16 17 gt0ne0ii 60
19 divcl iA3660iA36
20 15 18 19 mp3an23 iA3iA36
21 14 20 syl AiA36
22 9 11 21 addassd A1+iA+iA22+iA36=1+iA+iA22+iA36
23 7 a1i A1
24 23 4 11 21 add4d A1+iA+iA22+iA36=1+iA22+iA+iA36
25 2nn0 20
26 mulexp iA20iA2=i2A2
27 2 25 26 mp3an13 AiA2=i2A2
28 i2 i2=1
29 28 oveq1i i2A2=-1A2
30 29 a1i Ai2A2=-1A2
31 sqcl AA2
32 31 mulm1d A-1A2=A2
33 27 30 32 3eqtrd AiA2=A2
34 33 oveq1d AiA22=A22
35 2cn 2
36 2ne0 20
37 divneg A2220A22=A22
38 35 36 37 mp3an23 A2A22=A22
39 31 38 syl AA22=A22
40 34 39 eqtr4d AiA22=A22
41 40 oveq2d A1+iA22=1+A22
42 31 halfcld AA22
43 negsub 1A221+A22=1A22
44 7 42 43 sylancr A1+A22=1A22
45 41 44 eqtrd A1+iA22=1A22
46 mulexp iA30iA3=i3A3
47 2 12 46 mp3an13 AiA3=i3A3
48 i3 i3=i
49 48 oveq1i i3A3=iA3
50 47 49 eqtrdi AiA3=iA3
51 50 oveq1d AiA36=iA36
52 expcl A30A3
53 12 52 mpan2 AA3
54 negicn i
55 15 18 pm3.2i 660
56 divass iA3660iA36=iA36
57 54 55 56 mp3an13 A3iA36=iA36
58 53 57 syl AiA36=iA36
59 divcl A3660A36
60 15 18 59 mp3an23 A3A36
61 53 60 syl AA36
62 mulneg12 iA36iA36=iA36
63 2 61 62 sylancr AiA36=iA36
64 51 58 63 3eqtrd AiA36=iA36
65 64 oveq2d AiA+iA36=iA+iA36
66 61 negcld AA36
67 adddi iAA36iA+A36=iA+iA36
68 2 67 mp3an1 AA36iA+A36=iA+iA36
69 66 68 mpdan AiA+A36=iA+iA36
70 negsub AA36A+A36=AA36
71 61 70 mpdan AA+A36=AA36
72 71 oveq2d AiA+A36=iAA36
73 65 69 72 3eqtr2d AiA+iA36=iAA36
74 45 73 oveq12d A1+iA22+iA+iA36=1-A22+iAA36
75 22 24 74 3eqtrd A1+iA+iA22+iA36=1-A22+iAA36
76 75 oveq1d A1+iA+iA22+iA36+k4Fk=1A22+iAA36+k4Fk
77 6 76 eqtrd AeiA=1A22+iAA36+k4Fk