Metamath Proof Explorer


Theorem efiatan

Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion efiatan AdomarctaneiarctanA=1+iA1iA

Proof

Step Hyp Ref Expression
1 atanval AdomarctanarctanA=i2log1iAlog1+iA
2 1 oveq2d AdomarctaniarctanA=ii2log1iAlog1+iA
3 ax-icn i
4 3 a1i Adomarctani
5 halfcl ii2
6 3 5 mp1i Adomarctani2
7 ax-1cn 1
8 atandm2 AdomarctanA1iA01+iA0
9 8 simp1bi AdomarctanA
10 mulcl iAiA
11 3 9 10 sylancr AdomarctaniA
12 subcl 1iA1iA
13 7 11 12 sylancr Adomarctan1iA
14 8 simp2bi Adomarctan1iA0
15 13 14 logcld Adomarctanlog1iA
16 addcl 1iA1+iA
17 7 11 16 sylancr Adomarctan1+iA
18 8 simp3bi Adomarctan1+iA0
19 17 18 logcld Adomarctanlog1+iA
20 15 19 subcld Adomarctanlog1iAlog1+iA
21 4 6 20 mulassd Adomarctanii2log1iAlog1+iA=ii2log1iAlog1+iA
22 2cn 2
23 2ne0 20
24 divneg 122012=12
25 7 22 23 24 mp3an 12=12
26 ixi ii=1
27 26 oveq1i ii2=12
28 3 3 22 23 divassi ii2=ii2
29 25 27 28 3eqtr2i 12=ii2
30 29 oveq1i 12log1iAlog1+iA=ii2log1iAlog1+iA
31 halfcn 12
32 mulneg12 12log1iAlog1+iA12log1iAlog1+iA=12log1iAlog1+iA
33 31 20 32 sylancr Adomarctan12log1iAlog1+iA=12log1iAlog1+iA
34 15 19 negsubdi2d Adomarctanlog1iAlog1+iA=log1+iAlog1iA
35 34 oveq2d Adomarctan12log1iAlog1+iA=12log1+iAlog1iA
36 31 a1i Adomarctan12
37 36 19 15 subdid Adomarctan12log1+iAlog1iA=12log1+iA12log1iA
38 33 35 37 3eqtrd Adomarctan12log1iAlog1+iA=12log1+iA12log1iA
39 30 38 eqtr3id Adomarctanii2log1iAlog1+iA=12log1+iA12log1iA
40 2 21 39 3eqtr2d AdomarctaniarctanA=12log1+iA12log1iA
41 40 fveq2d AdomarctaneiarctanA=e12log1+iA12log1iA
42 mulcl 12log1+iA12log1+iA
43 31 19 42 sylancr Adomarctan12log1+iA
44 mulcl 12log1iA12log1iA
45 31 15 44 sylancr Adomarctan12log1iA
46 efsub 12log1+iA12log1iAe12log1+iA12log1iA=e12log1+iAe12log1iA
47 43 45 46 syl2anc Adomarctane12log1+iA12log1iA=e12log1+iAe12log1iA
48 17 18 36 cxpefd Adomarctan1+iA12=e12log1+iA
49 cxpsqrt 1+iA1+iA12=1+iA
50 17 49 syl Adomarctan1+iA12=1+iA
51 48 50 eqtr3d Adomarctane12log1+iA=1+iA
52 13 14 36 cxpefd Adomarctan1iA12=e12log1iA
53 cxpsqrt 1iA1iA12=1iA
54 13 53 syl Adomarctan1iA12=1iA
55 52 54 eqtr3d Adomarctane12log1iA=1iA
56 51 55 oveq12d Adomarctane12log1+iAe12log1iA=1+iA1iA
57 41 47 56 3eqtrd AdomarctaneiarctanA=1+iA1iA