Metamath Proof Explorer


Theorem efieq1re

Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008)

Ref Expression
Assertion efieq1re AeiA=1A

Proof

Step Hyp Ref Expression
1 replim AA=A+iA
2 1 oveq2d AiA=iA+iA
3 ax-icn i
4 recl AA
5 4 recnd AA
6 imcl AA
7 6 recnd AA
8 mulcl iAiA
9 3 7 8 sylancr AiA
10 adddi iAiAiA+iA=iA+iiA
11 3 5 9 10 mp3an2i AiA+iA=iA+iiA
12 ixi ii=1
13 12 oveq1i iiA=-1A
14 mulass iiAiiA=iiA
15 3 3 7 14 mp3an12i AiiA=iiA
16 7 mulm1d A-1A=A
17 13 15 16 3eqtr3a AiiA=A
18 17 oveq2d AiA+iiA=iA+A
19 11 18 eqtrd AiA+iA=iA+A
20 2 19 eqtrd AiA=iA+A
21 20 fveq2d AeiA=eiA+A
22 mulcl iAiA
23 3 5 22 sylancr AiA
24 6 renegcld AA
25 24 recnd AA
26 efadd iAAeiA+A=eiAeA
27 23 25 26 syl2anc AeiA+A=eiAeA
28 21 27 eqtrd AeiA=eiAeA
29 28 eqeq1d AeiA=1eiAeA=1
30 efcl iAeiA
31 23 30 syl AeiA
32 efcl AeA
33 25 32 syl AeA
34 31 33 absmuld AeiAeA=eiAeA
35 absefi AeiA=1
36 4 35 syl AeiA=1
37 24 reefcld AeA
38 efgt0 A0<eA
39 24 38 syl A0<eA
40 0re 0
41 ltle 0eA0<eA0eA
42 40 41 mpan eA0<eA0eA
43 37 39 42 sylc A0eA
44 37 43 absidd AeA=eA
45 36 44 oveq12d AeiAeA=1eA
46 33 mullidd A1eA=eA
47 34 45 46 3eqtrrd AeA=eiAeA
48 fveq2 eiAeA=1eiAeA=1
49 47 48 sylan9eq AeiAeA=1eA=1
50 49 ex AeiAeA=1eA=1
51 29 50 sylbid AeiA=1eA=1
52 7 negeq0d AA=0A=0
53 reim0b AAA=0
54 ef0 e0=1
55 abs1 1=1
56 54 55 eqtr4i e0=1
57 56 eqeq2i eA=e0eA=1
58 reef11 A0eA=e0A=0
59 24 40 58 sylancl AeA=e0A=0
60 57 59 bitr3id AeA=1A=0
61 52 53 60 3bitr4rd AeA=1A
62 51 61 sylibd AeiA=1A
63 62 imp AeiA=1A