Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ehl1eudis.e | |
|
ehl1eudis.x | |
||
ehl1eudis.d | |
||
Assertion | ehl1eudis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl1eudis.e | |
|
2 | ehl1eudis.x | |
|
3 | ehl1eudis.d | |
|
4 | 1nn0 | |
|
5 | 1z | |
|
6 | fzsn | |
|
7 | 5 6 | ax-mp | |
8 | 7 | eqcomi | |
9 | 8 1 2 3 | ehleudis | |
10 | 4 9 | ax-mp | |
11 | 2 | eleq2i | |
12 | reex | |
|
13 | snex | |
|
14 | 12 13 | elmap | |
15 | 11 14 | bitri | |
16 | id | |
|
17 | 1ex | |
|
18 | 17 | snid | |
19 | 18 | a1i | |
20 | 16 19 | ffvelcdmd | |
21 | 15 20 | sylbi | |
22 | 21 | adantr | |
23 | 2 | eleq2i | |
24 | 12 13 | elmap | |
25 | 23 24 | bitri | |
26 | id | |
|
27 | 18 | a1i | |
28 | 26 27 | ffvelcdmd | |
29 | 25 28 | sylbi | |
30 | 29 | adantl | |
31 | 22 30 | resubcld | |
32 | 31 | resqcld | |
33 | 32 | recnd | |
34 | fveq2 | |
|
35 | fveq2 | |
|
36 | 34 35 | oveq12d | |
37 | 36 | oveq1d | |
38 | 37 | sumsn | |
39 | 5 33 38 | sylancr | |
40 | 39 | fveq2d | |
41 | 31 | absred | |
42 | 40 41 | eqtr4d | |
43 | 42 | mpoeq3ia | |
44 | 10 43 | eqtri | |