Metamath Proof Explorer


Theorem ehl1eudis

Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses ehl1eudis.e E=𝔼hil1
ehl1eudis.x X=1
ehl1eudis.d D=distE
Assertion ehl1eudis D=fX,gXf1g1

Proof

Step Hyp Ref Expression
1 ehl1eudis.e E=𝔼hil1
2 ehl1eudis.x X=1
3 ehl1eudis.d D=distE
4 1nn0 10
5 1z 1
6 fzsn 111=1
7 5 6 ax-mp 11=1
8 7 eqcomi 1=11
9 8 1 2 3 ehleudis 10D=fX,gXk1fkgk2
10 4 9 ax-mp D=fX,gXk1fkgk2
11 2 eleq2i fXf1
12 reex V
13 snex 1V
14 12 13 elmap f1f:1
15 11 14 bitri fXf:1
16 id f:1f:1
17 1ex 1V
18 17 snid 11
19 18 a1i f:111
20 16 19 ffvelcdmd f:1f1
21 15 20 sylbi fXf1
22 21 adantr fXgXf1
23 2 eleq2i gXg1
24 12 13 elmap g1g:1
25 23 24 bitri gXg:1
26 id g:1g:1
27 18 a1i g:111
28 26 27 ffvelcdmd g:1g1
29 25 28 sylbi gXg1
30 29 adantl fXgXg1
31 22 30 resubcld fXgXf1g1
32 31 resqcld fXgXf1g12
33 32 recnd fXgXf1g12
34 fveq2 k=1fk=f1
35 fveq2 k=1gk=g1
36 34 35 oveq12d k=1fkgk=f1g1
37 36 oveq1d k=1fkgk2=f1g12
38 37 sumsn 1f1g12k1fkgk2=f1g12
39 5 33 38 sylancr fXgXk1fkgk2=f1g12
40 39 fveq2d fXgXk1fkgk2=f1g12
41 31 absred fXgXf1g1=f1g12
42 40 41 eqtr4d fXgXk1fkgk2=f1g1
43 42 mpoeq3ia fX,gXk1fkgk2=fX,gXf1g1
44 10 43 eqtri D=fX,gXf1g1