| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl1eudis.e |  | 
						
							| 2 |  | ehl1eudis.x |  | 
						
							| 3 |  | ehl1eudis.d |  | 
						
							| 4 |  | 1nn0 |  | 
						
							| 5 |  | 1z |  | 
						
							| 6 |  | fzsn |  | 
						
							| 7 | 5 6 | ax-mp |  | 
						
							| 8 | 7 | eqcomi |  | 
						
							| 9 | 8 1 2 3 | ehleudis |  | 
						
							| 10 | 4 9 | ax-mp |  | 
						
							| 11 | 2 | eleq2i |  | 
						
							| 12 |  | reex |  | 
						
							| 13 |  | snex |  | 
						
							| 14 | 12 13 | elmap |  | 
						
							| 15 | 11 14 | bitri |  | 
						
							| 16 |  | id |  | 
						
							| 17 |  | 1ex |  | 
						
							| 18 | 17 | snid |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 16 19 | ffvelcdmd |  | 
						
							| 21 | 15 20 | sylbi |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 2 | eleq2i |  | 
						
							| 24 | 12 13 | elmap |  | 
						
							| 25 | 23 24 | bitri |  | 
						
							| 26 |  | id |  | 
						
							| 27 | 18 | a1i |  | 
						
							| 28 | 26 27 | ffvelcdmd |  | 
						
							| 29 | 25 28 | sylbi |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 22 30 | resubcld |  | 
						
							| 32 | 31 | resqcld |  | 
						
							| 33 | 32 | recnd |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 34 35 | oveq12d |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 37 | sumsn |  | 
						
							| 39 | 5 33 38 | sylancr |  | 
						
							| 40 | 39 | fveq2d |  | 
						
							| 41 | 31 | absred |  | 
						
							| 42 | 40 41 | eqtr4d |  | 
						
							| 43 | 42 | mpoeq3ia |  | 
						
							| 44 | 10 43 | eqtri |  |