| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlkn1.w |
|
| 2 |
|
simpl |
|
| 3 |
2
|
anim1i |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
anim1i |
|
| 8 |
1
|
eleclclwwlknlem1 |
|
| 9 |
4 7 8
|
sylc |
|
| 10 |
|
eqid |
|
| 11 |
10
|
clwwlknbp |
|
| 12 |
11 1
|
eleq2s |
|
| 13 |
|
fznn0sub2 |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
imbitrrid |
|
| 17 |
16
|
adantl |
|
| 18 |
12 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
com12 |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
imp |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
24
|
ancomd |
|
| 26 |
25
|
adantr |
|
| 27 |
23 26
|
jca |
|
| 28 |
|
simpll |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
eqcoms |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
biimpa |
|
| 34 |
28 33
|
jca |
|
| 35 |
34
|
ex |
|
| 36 |
12 35
|
syl |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
com12 |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
imp |
|
| 41 |
5
|
eqcomd |
|
| 42 |
41
|
adantr |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
eqcoms |
|
| 45 |
|
elfzelz |
|
| 46 |
|
2cshwid |
|
| 47 |
45 46
|
sylan2 |
|
| 48 |
44 47
|
sylan9eqr |
|
| 49 |
40 42 48
|
syl2anc |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
anim1i |
|
| 52 |
1
|
eleclclwwlknlem1 |
|
| 53 |
27 51 52
|
sylc |
|
| 54 |
9 53
|
impbida |
|