Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | enfii | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi | |
|
2 | df-rex | |
|
3 | 1 2 | sylbb | |
4 | ensymfib | |
|
5 | 4 | biimparc | |
6 | 19.41v | |
|
7 | simp1 | |
|
8 | nnfi | |
|
9 | ensymfib | |
|
10 | 9 | biimpar | |
11 | 10 | 3adant3 | |
12 | entrfil | |
|
13 | 11 12 | syld3an2 | |
14 | ensymfib | |
|
15 | 14 | 3ad2ant1 | |
16 | 13 15 | mpbid | |
17 | 8 16 | syl3an1 | |
18 | 7 17 | jca | |
19 | 18 | 3expa | |
20 | 19 | eximi | |
21 | 6 20 | sylbir | |
22 | 3 5 21 | syl2an2 | |
23 | df-rex | |
|
24 | 22 23 | sylibr | |
25 | isfi | |
|
26 | 24 25 | sylibr | |
27 | 26 | ancoms | |