Metamath Proof Explorer


Theorem enfii

Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion enfii BFinABAFin

Proof

Step Hyp Ref Expression
1 isfi BFinxωBx
2 df-rex xωBxxxωBx
3 1 2 sylbb BFinxxωBx
4 ensymfib BFinBAAB
5 4 biimparc ABBFinBA
6 19.41v xxωBxBAxxωBxBA
7 simp1 xωBxBAxω
8 nnfi xωxFin
9 ensymfib xFinxBBx
10 9 biimpar xFinBxxB
11 10 3adant3 xFinBxBAxB
12 entrfil xFinxBBAxA
13 11 12 syld3an2 xFinBxBAxA
14 ensymfib xFinxAAx
15 14 3ad2ant1 xFinBxBAxAAx
16 13 15 mpbid xFinBxBAAx
17 8 16 syl3an1 xωBxBAAx
18 7 17 jca xωBxBAxωAx
19 18 3expa xωBxBAxωAx
20 19 eximi xxωBxBAxxωAx
21 6 20 sylbir xxωBxBAxxωAx
22 3 5 21 syl2an2 ABBFinxxωAx
23 df-rex xωAxxxωAx
24 22 23 sylibr ABBFinxωAx
25 isfi AFinxωAx
26 24 25 sylibr ABBFinAFin
27 26 ancoms BFinABAFin