Metamath Proof Explorer


Theorem enfin1ai

Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion enfin1ai ABAFinIaBFinIa

Proof

Step Hyp Ref Expression
1 ensym ABBA
2 bren BAff:B1-1 ontoA
3 1 2 sylib ABff:B1-1 ontoA
4 elpwi x𝒫BxB
5 simplr f:B1-1 ontoAAFinIaxBAFinIa
6 imassrn fxranf
7 f1of f:B1-1 ontoAf:BA
8 7 ad2antrr f:B1-1 ontoAAFinIaxBf:BA
9 8 frnd f:B1-1 ontoAAFinIaxBranfA
10 6 9 sstrid f:B1-1 ontoAAFinIaxBfxA
11 fin1ai AFinIafxAfxFinAfxFin
12 5 10 11 syl2anc f:B1-1 ontoAAFinIaxBfxFinAfxFin
13 f1of1 f:B1-1 ontoAf:B1-1A
14 13 ad2antrr f:B1-1 ontoAAFinIaxBf:B1-1A
15 simpr f:B1-1 ontoAAFinIaxBxB
16 vex xV
17 16 a1i f:B1-1 ontoAAFinIaxBxV
18 f1imaeng f:B1-1AxBxVfxx
19 14 15 17 18 syl3anc f:B1-1 ontoAAFinIaxBfxx
20 enfi fxxfxFinxFin
21 19 20 syl f:B1-1 ontoAAFinIaxBfxFinxFin
22 df-f1 f:B1-1Af:BAFunf-1
23 22 simprbi f:B1-1AFunf-1
24 imadif Funf-1fBx=fBfx
25 14 23 24 3syl f:B1-1 ontoAAFinIaxBfBx=fBfx
26 f1ofo f:B1-1 ontoAf:BontoA
27 foima f:BontoAfB=A
28 26 27 syl f:B1-1 ontoAfB=A
29 28 ad2antrr f:B1-1 ontoAAFinIaxBfB=A
30 29 difeq1d f:B1-1 ontoAAFinIaxBfBfx=Afx
31 25 30 eqtrd f:B1-1 ontoAAFinIaxBfBx=Afx
32 difssd f:B1-1 ontoAAFinIaxBBxB
33 vex fV
34 7 adantr f:B1-1 ontoAAFinIaf:BA
35 dmfex fVf:BABV
36 33 34 35 sylancr f:B1-1 ontoAAFinIaBV
37 36 adantr f:B1-1 ontoAAFinIaxBBV
38 37 difexd f:B1-1 ontoAAFinIaxBBxV
39 f1imaeng f:B1-1ABxBBxVfBxBx
40 14 32 38 39 syl3anc f:B1-1 ontoAAFinIaxBfBxBx
41 31 40 eqbrtrrd f:B1-1 ontoAAFinIaxBAfxBx
42 enfi AfxBxAfxFinBxFin
43 41 42 syl f:B1-1 ontoAAFinIaxBAfxFinBxFin
44 21 43 orbi12d f:B1-1 ontoAAFinIaxBfxFinAfxFinxFinBxFin
45 12 44 mpbid f:B1-1 ontoAAFinIaxBxFinBxFin
46 4 45 sylan2 f:B1-1 ontoAAFinIax𝒫BxFinBxFin
47 46 ralrimiva f:B1-1 ontoAAFinIax𝒫BxFinBxFin
48 isfin1a BVBFinIax𝒫BxFinBxFin
49 36 48 syl f:B1-1 ontoAAFinIaBFinIax𝒫BxFinBxFin
50 47 49 mpbird f:B1-1 ontoAAFinIaBFinIa
51 50 ex f:B1-1 ontoAAFinIaBFinIa
52 51 exlimiv ff:B1-1 ontoAAFinIaBFinIa
53 3 52 syl ABAFinIaBFinIa