Metamath Proof Explorer


Theorem erng1r

Description: The division ring unity of an endomorphism ring. (Contributed by NM, 5-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses erng1r.h H=LHypK
erng1r.t T=LTrnKW
erng1r.d D=EDRingKW
erng1r.r 1˙=1D
Assertion erng1r KHLWH1˙=IT

Proof

Step Hyp Ref Expression
1 erng1r.h H=LHypK
2 erng1r.t T=LTrnKW
3 erng1r.d D=EDRingKW
4 erng1r.r 1˙=1D
5 eqid TEndoKW=TEndoKW
6 1 2 5 tendoidcl KHLWHITTEndoKW
7 eqid BaseD=BaseD
8 1 2 5 3 7 erngbase KHLWHBaseD=TEndoKW
9 6 8 eleqtrrd KHLWHITBaseD
10 eqid BaseK=BaseK
11 eqid fTIBaseK=fTIBaseK
12 10 1 2 5 11 tendo1ne0 KHLWHITfTIBaseK
13 eqid 0D=0D
14 10 1 2 3 11 13 erng0g KHLWH0D=fTIBaseK
15 12 14 neeqtrrd KHLWHIT0D
16 id KHLWHKHLWH
17 eqid D=D
18 1 2 5 3 17 erngmul KHLWHITTEndoKWITTEndoKWITDIT=ITIT
19 16 6 6 18 syl12anc KHLWHITDIT=ITIT
20 f1oi IT:T1-1 ontoT
21 f1of IT:T1-1 ontoTIT:TT
22 fcoi2 IT:TTITIT=IT
23 20 21 22 mp2b ITIT=IT
24 19 23 eqtrdi KHLWHITDIT=IT
25 9 15 24 3jca KHLWHITBaseDIT0DITDIT=IT
26 1 3 erngdv KHLWHDDivRing
27 7 17 13 4 drngid2 DDivRingITBaseDIT0DITDIT=IT1˙=IT
28 26 27 syl KHLWHITBaseDIT0DITDIT=IT1˙=IT
29 25 28 mpbid KHLWH1˙=IT