Metamath Proof Explorer


Theorem esumeq12dvaf

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017)

Ref Expression
Hypotheses esumeq12dvaf.1 k φ
esumeq12dvaf.2 φ A = B
esumeq12dvaf.3 φ k A C = D
Assertion esumeq12dvaf φ * k A C = * k B D

Proof

Step Hyp Ref Expression
1 esumeq12dvaf.1 k φ
2 esumeq12dvaf.2 φ A = B
3 esumeq12dvaf.3 φ k A C = D
4 1 2 alrimi φ k A = B
5 3 ex φ k A C = D
6 1 5 ralrimi φ k A C = D
7 mpteq12f k A = B k A C = D k A C = k B D
8 4 6 7 syl2anc φ k A C = k B D
9 8 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums k A C = 𝑠 * 𝑠 0 +∞ tsums k B D
10 9 unieqd φ 𝑠 * 𝑠 0 +∞ tsums k A C = 𝑠 * 𝑠 0 +∞ tsums k B D
11 df-esum * k A C = 𝑠 * 𝑠 0 +∞ tsums k A C
12 df-esum * k B D = 𝑠 * 𝑠 0 +∞ tsums k B D
13 10 11 12 3eqtr4g φ * k A C = * k B D