Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
esumeq12dvaf
Next ⟩
esumeq12dva
Metamath Proof Explorer
Ascii
Unicode
Theorem
esumeq12dvaf
Description:
Equality deduction for extended sum.
(Contributed by
Thierry Arnoux
, 26-Mar-2017)
Ref
Expression
Hypotheses
esumeq12dvaf.1
⊢
Ⅎ
k
φ
esumeq12dvaf.2
⊢
φ
→
A
=
B
esumeq12dvaf.3
⊢
φ
∧
k
∈
A
→
C
=
D
Assertion
esumeq12dvaf
⊢
φ
→
∑
*
k
∈
A
C
=
∑
*
k
∈
B
D
Proof
Step
Hyp
Ref
Expression
1
esumeq12dvaf.1
⊢
Ⅎ
k
φ
2
esumeq12dvaf.2
⊢
φ
→
A
=
B
3
esumeq12dvaf.3
⊢
φ
∧
k
∈
A
→
C
=
D
4
1
2
alrimi
⊢
φ
→
∀
k
A
=
B
5
3
ex
⊢
φ
→
k
∈
A
→
C
=
D
6
1
5
ralrimi
⊢
φ
→
∀
k
∈
A
C
=
D
7
mpteq12f
⊢
∀
k
A
=
B
∧
∀
k
∈
A
C
=
D
→
k
∈
A
⟼
C
=
k
∈
B
⟼
D
8
4
6
7
syl2anc
⊢
φ
→
k
∈
A
⟼
C
=
k
∈
B
⟼
D
9
8
oveq2d
⊢
φ
→
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
=
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
B
⟼
D
10
9
unieqd
⊢
φ
→
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
B
⟼
D
11
df-esum
⊢
∑
*
k
∈
A
C
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
12
df-esum
⊢
∑
*
k
∈
B
D
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
B
⟼
D
13
10
11
12
3eqtr4g
⊢
φ
→
∑
*
k
∈
A
C
=
∑
*
k
∈
B
D