Metamath Proof Explorer


Theorem esumgsum

Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020)

Ref Expression
Hypotheses esumgsum.1 k φ
esumgsum.2 _ k A
esumgsum.3 φ A Fin
esumgsum.4 φ k A B 0 +∞
Assertion esumgsum φ * k A B = 𝑠 * 𝑠 0 +∞ k A B

Proof

Step Hyp Ref Expression
1 esumgsum.1 k φ
2 esumgsum.2 _ k A
3 esumgsum.3 φ A Fin
4 esumgsum.4 φ k A B 0 +∞
5 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
6 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
7 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
8 7 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
9 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
10 9 a1i φ 𝑠 * 𝑠 0 +∞ TopSp
11 nfcv _ k 0 +∞
12 eqid k A B = k A B
13 1 2 11 4 12 fmptdF φ k A B : A 0 +∞
14 4 ex φ k A B 0 +∞
15 1 14 ralrimi φ k A B 0 +∞
16 2 fnmptf k A B 0 +∞ k A B Fn A
17 15 16 syl φ k A B Fn A
18 0xr 0 *
19 18 a1i φ 0 *
20 17 3 19 fndmfifsupp φ finSupp 0 k A B
21 5 6 8 10 3 13 20 tsmsid φ 𝑠 * 𝑠 0 +∞ k A B 𝑠 * 𝑠 0 +∞ tsums k A B
22 1 2 3 4 21 esumid φ * k A B = 𝑠 * 𝑠 0 +∞ k A B