Metamath Proof Explorer


Theorem esumgsum

Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020)

Ref Expression
Hypotheses esumgsum.1 kφ
esumgsum.2 _kA
esumgsum.3 φAFin
esumgsum.4 φkAB0+∞
Assertion esumgsum φ*kAB=𝑠*𝑠0+∞kAB

Proof

Step Hyp Ref Expression
1 esumgsum.1 kφ
2 esumgsum.2 _kA
3 esumgsum.3 φAFin
4 esumgsum.4 φkAB0+∞
5 xrge0base 0+∞=Base𝑠*𝑠0+∞
6 xrge00 0=0𝑠*𝑠0+∞
7 xrge0cmn 𝑠*𝑠0+∞CMnd
8 7 a1i φ𝑠*𝑠0+∞CMnd
9 xrge0tps 𝑠*𝑠0+∞TopSp
10 9 a1i φ𝑠*𝑠0+∞TopSp
11 nfcv _k0+∞
12 eqid kAB=kAB
13 1 2 11 4 12 fmptdF φkAB:A0+∞
14 4 ex φkAB0+∞
15 1 14 ralrimi φkAB0+∞
16 2 fnmptf kAB0+∞kABFnA
17 15 16 syl φkABFnA
18 0xr 0*
19 18 a1i φ0*
20 17 3 19 fndmfifsupp φfinSupp0kAB
21 5 6 8 10 3 13 20 tsmsid φ𝑠*𝑠0+∞kAB𝑠*𝑠0+∞tsumskAB
22 1 2 3 4 21 esumid φ*kAB=𝑠*𝑠0+∞kAB