Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumgsum.1 | |
|
esumgsum.2 | |
||
esumgsum.3 | |
||
esumgsum.4 | |
||
Assertion | esumgsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumgsum.1 | |
|
2 | esumgsum.2 | |
|
3 | esumgsum.3 | |
|
4 | esumgsum.4 | |
|
5 | xrge0base | |
|
6 | xrge00 | |
|
7 | xrge0cmn | |
|
8 | 7 | a1i | |
9 | xrge0tps | |
|
10 | 9 | a1i | |
11 | nfcv | |
|
12 | eqid | |
|
13 | 1 2 11 4 12 | fmptdF | |
14 | 4 | ex | |
15 | 1 14 | ralrimi | |
16 | 2 | fnmptf | |
17 | 15 16 | syl | |
18 | 0xr | |
|
19 | 18 | a1i | |
20 | 17 3 19 | fndmfifsupp | |
21 | 5 6 8 10 3 13 20 | tsmsid | |
22 | 1 2 3 4 21 | esumid | |