Metamath Proof Explorer


Theorem etransclem7

Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem7.n φP
etransclem7.c φC:0M0N
etransclem7.j φJ0M
Assertion etransclem7 φj=1MifP<Cj0P!PCj!JjPCj

Proof

Step Hyp Ref Expression
1 etransclem7.n φP
2 etransclem7.c φC:0M0N
3 etransclem7.j φJ0M
4 fzfid φ1MFin
5 0zd φj1MP<Cj0
6 0zd φj1M¬P<Cj0
7 1 nnzd φP
8 7 ad2antrr φj1M¬P<CjP
9 7 adantr φj1MP
10 2 adantr φj1MC:0M0N
11 0zd j1M0
12 fzp1ss 00+1M0M
13 11 12 syl j1M0+1M0M
14 id j1Mj1M
15 1e0p1 1=0+1
16 15 oveq1i 1M=0+1M
17 14 16 eleqtrdi j1Mj0+1M
18 13 17 sseldd j1Mj0M
19 18 adantl φj1Mj0M
20 10 19 ffvelcdmd φj1MCj0N
21 20 elfzelzd φj1MCj
22 9 21 zsubcld φj1MPCj
23 22 adantr φj1M¬P<CjPCj
24 21 zred φj1MCj
25 24 adantr φj1M¬P<CjCj
26 8 zred φj1M¬P<CjP
27 simpr φj1M¬P<Cj¬P<Cj
28 25 26 27 nltled φj1M¬P<CjCjP
29 26 25 subge0d φj1M¬P<Cj0PCjCjP
30 28 29 mpbird φj1M¬P<Cj0PCj
31 elfzle1 Cj0N0Cj
32 20 31 syl φj1M0Cj
33 32 adantr φj1M¬P<Cj0Cj
34 26 25 subge02d φj1M¬P<Cj0CjPCjP
35 33 34 mpbid φj1M¬P<CjPCjP
36 6 8 23 30 35 elfzd φj1M¬P<CjPCj0P
37 permnn PCj0PP!PCj!
38 36 37 syl φj1M¬P<CjP!PCj!
39 38 nnzd φj1M¬P<CjP!PCj!
40 3 elfzelzd φJ
41 40 adantr φj1MJ
42 elfzelz j1Mj
43 42 adantl φj1Mj
44 41 43 zsubcld φj1MJj
45 44 adantr φj1M¬P<CjJj
46 elnn0z PCj0PCj0PCj
47 23 30 46 sylanbrc φj1M¬P<CjPCj0
48 zexpcl JjPCj0JjPCj
49 45 47 48 syl2anc φj1M¬P<CjJjPCj
50 39 49 zmulcld φj1M¬P<CjP!PCj!JjPCj
51 5 50 ifclda φj1MifP<Cj0P!PCj!JjPCj
52 4 51 fprodzcl φj=1MifP<Cj0P!PCj!JjPCj