Description: Lemma for eulerpart : Rewriting the U set for an odd partition Note that interestingly, this proof reuses marypha2lem2 . (Contributed by Thierry Arnoux, 10-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eulerpart.p | |
|
eulerpart.o | |
||
eulerpart.d | |
||
eulerpart.j | |
||
eulerpart.f | |
||
eulerpart.h | |
||
eulerpart.m | |
||
eulerpart.r | |
||
eulerpart.t | |
||
eulerpart.g | |
||
eulerpartlemgh.1 | |
||
Assertion | eulerpartlemgu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpart.p | |
|
2 | eulerpart.o | |
|
3 | eulerpart.d | |
|
4 | eulerpart.j | |
|
5 | eulerpart.f | |
|
6 | eulerpart.h | |
|
7 | eulerpart.m | |
|
8 | eulerpart.r | |
|
9 | eulerpart.t | |
|
10 | eulerpart.g | |
|
11 | eulerpartlemgh.1 | |
|
12 | 1 2 3 4 5 6 7 8 9 | eulerpartlemt0 | |
13 | 12 | simp1bi | |
14 | elmapi | |
|
15 | 13 14 | syl | |
16 | 15 | adantr | |
17 | 16 | ffund | |
18 | inss1 | |
|
19 | cnvimass | |
|
20 | 19 15 | fssdm | |
21 | 18 20 | sstrid | |
22 | 21 | sselda | |
23 | 15 | fdmd | |
24 | 23 | eleq2d | |
25 | 24 | adantr | |
26 | 22 25 | mpbird | |
27 | fvco | |
|
28 | 17 26 27 | syl2anc | |
29 | 28 | xpeq2d | |
30 | 29 | iuneq2dv | |
31 | eqid | |
|
32 | 31 | marypha2lem2 | |
33 | 30 32 | eqtr3di | |
34 | 11 33 | eqtrid | |