Metamath Proof Explorer


Theorem eulerpartlemgu

Description: Lemma for eulerpart : Rewriting the U set for an odd partition Note that interestingly, this proof reuses marypha2lem2 . (Contributed by Thierry Arnoux, 10-Aug-2018)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
eulerpart.g G=oTR𝟙FMbitsoJ
eulerpartlemgh.1 U=tA-1Jt×bitsAt
Assertion eulerpartlemgu ATRU=tn|tA-1JnbitsAt

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eulerpart.g G=oTR𝟙FMbitsoJ
11 eulerpartlemgh.1 U=tA-1Jt×bitsAt
12 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ATRA0A-1FinA-1J
13 12 simp1bi ATRA0
14 elmapi A0A:0
15 13 14 syl ATRA:0
16 15 adantr ATRtA-1JA:0
17 16 ffund ATRtA-1JFunA
18 inss1 A-1JA-1
19 cnvimass A-1domA
20 19 15 fssdm ATRA-1
21 18 20 sstrid ATRA-1J
22 21 sselda ATRtA-1Jt
23 15 fdmd ATRdomA=
24 23 eleq2d ATRtdomAt
25 24 adantr ATRtA-1JtdomAt
26 22 25 mpbird ATRtA-1JtdomA
27 fvco FunAtdomAbitsAt=bitsAt
28 17 26 27 syl2anc ATRtA-1JbitsAt=bitsAt
29 28 xpeq2d ATRtA-1Jt×bitsAt=t×bitsAt
30 29 iuneq2dv ATRtA-1Jt×bitsAt=tA-1Jt×bitsAt
31 eqid tA-1Jt×bitsAt=tA-1Jt×bitsAt
32 31 marypha2lem2 tA-1Jt×bitsAt=tn|tA-1JnbitsAt
33 30 32 eqtr3di ATRtA-1Jt×bitsAt=tn|tA-1JnbitsAt
34 11 33 eqtrid ATRU=tn|tA-1JnbitsAt