| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phicl |
|
| 2 |
1
|
nnnn0d |
|
| 3 |
|
hashfz1 |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
dfphi2 |
|
| 6 |
4 5
|
eqtrd |
|
| 7 |
6
|
3ad2ant1 |
|
| 8 |
|
fzfi |
|
| 9 |
|
fzofi |
|
| 10 |
|
ssrab2 |
|
| 11 |
|
ssfi |
|
| 12 |
9 10 11
|
mp2an |
|
| 13 |
|
hashen |
|
| 14 |
8 12 13
|
mp2an |
|
| 15 |
7 14
|
sylib |
|
| 16 |
|
bren |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
simpl |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
eqeq1d |
|
| 21 |
20
|
cbvrabv |
|
| 22 |
|
eqid |
|
| 23 |
|
simpr |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
oveq2d |
|
| 26 |
25
|
oveq1d |
|
| 27 |
26
|
cbvmptv |
|
| 28 |
18 21 22 23 27
|
eulerthlem2 |
|
| 29 |
17 28
|
exlimddv |
|