Description: Euler's theorem, a generalization of Fermat's little theorem. If A and N are coprime, then A ^ phi ( N ) == 1 (mod N ). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in ApostolNT p. 113. (Contributed by Mario Carneiro, 28-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eulerth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phicl | |
|
2 | 1 | nnnn0d | |
3 | hashfz1 | |
|
4 | 2 3 | syl | |
5 | dfphi2 | |
|
6 | 4 5 | eqtrd | |
7 | 6 | 3ad2ant1 | |
8 | fzfi | |
|
9 | fzofi | |
|
10 | ssrab2 | |
|
11 | ssfi | |
|
12 | 9 10 11 | mp2an | |
13 | hashen | |
|
14 | 8 12 13 | mp2an | |
15 | 7 14 | sylib | |
16 | bren | |
|
17 | 15 16 | sylib | |
18 | simpl | |
|
19 | oveq1 | |
|
20 | 19 | eqeq1d | |
21 | 20 | cbvrabv | |
22 | eqid | |
|
23 | simpr | |
|
24 | fveq2 | |
|
25 | 24 | oveq2d | |
26 | 25 | oveq1d | |
27 | 26 | cbvmptv | |
28 | 18 21 22 23 27 | eulerthlem2 | |
29 | 17 28 | exlimddv | |