Metamath Proof Explorer


Theorem euotd

Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015)

Ref Expression
Hypotheses euotd.1 φAU
euotd.2 φBV
euotd.3 φCW
euotd.4 φψa=Ab=Bc=C
Assertion euotd φ∃!xabcx=abcψ

Proof

Step Hyp Ref Expression
1 euotd.1 φAU
2 euotd.2 φBV
3 euotd.3 φCW
4 euotd.4 φψa=Ab=Bc=C
5 4 biimpa φψa=Ab=Bc=C
6 vex aV
7 vex bV
8 vex cV
9 6 7 8 otth abc=ABCa=Ab=Bc=C
10 5 9 sylibr φψabc=ABC
11 10 eqeq2d φψx=abcx=ABC
12 11 biimpd φψx=abcx=ABC
13 12 impancom φx=abcψx=ABC
14 13 expimpd φx=abcψx=ABC
15 14 exlimdv φcx=abcψx=ABC
16 15 exlimdvv φabcx=abcψx=ABC
17 tru
18 2 adantr φa=ABV
19 3 ad2antrr φa=Ab=BCW
20 simpr φa=Ab=Bc=Ca=Ab=Bc=C
21 20 9 sylibr φa=Ab=Bc=Cabc=ABC
22 21 eqcomd φa=Ab=Bc=CABC=abc
23 4 biimpar φa=Ab=Bc=Cψ
24 22 23 jca φa=Ab=Bc=CABC=abcψ
25 trud φa=Ab=Bc=C
26 24 25 2thd φa=Ab=Bc=CABC=abcψ
27 26 3anassrs φa=Ab=Bc=CABC=abcψ
28 19 27 sbcied φa=Ab=B[˙C/c]˙ABC=abcψ
29 18 28 sbcied φa=A[˙B/b]˙[˙C/c]˙ABC=abcψ
30 1 29 sbcied φ[˙A/a]˙[˙B/b]˙[˙C/c]˙ABC=abcψ
31 17 30 mpbiri φ[˙A/a]˙[˙B/b]˙[˙C/c]˙ABC=abcψ
32 31 spesbcd φa[˙B/b]˙[˙C/c]˙ABC=abcψ
33 nfcv _bB
34 nfsbc1v b[˙B/b]˙[˙C/c]˙ABC=abcψ
35 34 nfex ba[˙B/b]˙[˙C/c]˙ABC=abcψ
36 sbceq1a b=B[˙C/c]˙ABC=abcψ[˙B/b]˙[˙C/c]˙ABC=abcψ
37 36 exbidv b=Ba[˙C/c]˙ABC=abcψa[˙B/b]˙[˙C/c]˙ABC=abcψ
38 33 35 37 spcegf BVa[˙B/b]˙[˙C/c]˙ABC=abcψba[˙C/c]˙ABC=abcψ
39 2 32 38 sylc φba[˙C/c]˙ABC=abcψ
40 nfcv _cC
41 nfsbc1v c[˙C/c]˙ABC=abcψ
42 41 nfex ca[˙C/c]˙ABC=abcψ
43 42 nfex cba[˙C/c]˙ABC=abcψ
44 sbceq1a c=CABC=abcψ[˙C/c]˙ABC=abcψ
45 44 2exbidv c=CbaABC=abcψba[˙C/c]˙ABC=abcψ
46 40 43 45 spcegf CWba[˙C/c]˙ABC=abcψcbaABC=abcψ
47 3 39 46 sylc φcbaABC=abcψ
48 excom13 cbaABC=abcψabcABC=abcψ
49 47 48 sylib φabcABC=abcψ
50 eqeq1 x=ABCx=abcABC=abc
51 50 anbi1d x=ABCx=abcψABC=abcψ
52 51 3exbidv x=ABCabcx=abcψabcABC=abcψ
53 49 52 syl5ibrcom φx=ABCabcx=abcψ
54 16 53 impbid φabcx=abcψx=ABC
55 54 alrimiv φxabcx=abcψx=ABC
56 otex ABCV
57 eqeq2 y=ABCx=yx=ABC
58 57 bibi2d y=ABCabcx=abcψx=yabcx=abcψx=ABC
59 58 albidv y=ABCxabcx=abcψx=yxabcx=abcψx=ABC
60 56 59 spcev xabcx=abcψx=ABCyxabcx=abcψx=y
61 55 60 syl φyxabcx=abcψx=y
62 eu6 ∃!xabcx=abcψyxabcx=abcψx=y
63 61 62 sylibr φ∃!xabcx=abcψ