Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | euotd.1 | |
|
euotd.2 | |
||
euotd.3 | |
||
euotd.4 | |
||
Assertion | euotd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euotd.1 | |
|
2 | euotd.2 | |
|
3 | euotd.3 | |
|
4 | euotd.4 | |
|
5 | 4 | biimpa | |
6 | vex | |
|
7 | vex | |
|
8 | vex | |
|
9 | 6 7 8 | otth | |
10 | 5 9 | sylibr | |
11 | 10 | eqeq2d | |
12 | 11 | biimpd | |
13 | 12 | impancom | |
14 | 13 | expimpd | |
15 | 14 | exlimdv | |
16 | 15 | exlimdvv | |
17 | tru | |
|
18 | 2 | adantr | |
19 | 3 | ad2antrr | |
20 | simpr | |
|
21 | 20 9 | sylibr | |
22 | 21 | eqcomd | |
23 | 4 | biimpar | |
24 | 22 23 | jca | |
25 | trud | |
|
26 | 24 25 | 2thd | |
27 | 26 | 3anassrs | |
28 | 19 27 | sbcied | |
29 | 18 28 | sbcied | |
30 | 1 29 | sbcied | |
31 | 17 30 | mpbiri | |
32 | 31 | spesbcd | |
33 | nfcv | |
|
34 | nfsbc1v | |
|
35 | 34 | nfex | |
36 | sbceq1a | |
|
37 | 36 | exbidv | |
38 | 33 35 37 | spcegf | |
39 | 2 32 38 | sylc | |
40 | nfcv | |
|
41 | nfsbc1v | |
|
42 | 41 | nfex | |
43 | 42 | nfex | |
44 | sbceq1a | |
|
45 | 44 | 2exbidv | |
46 | 40 43 45 | spcegf | |
47 | 3 39 46 | sylc | |
48 | excom13 | |
|
49 | 47 48 | sylib | |
50 | eqeq1 | |
|
51 | 50 | anbi1d | |
52 | 51 | 3exbidv | |
53 | 49 52 | syl5ibrcom | |
54 | 16 53 | impbid | |
55 | 54 | alrimiv | |
56 | otex | |
|
57 | eqeq2 | |
|
58 | 57 | bibi2d | |
59 | 58 | albidv | |
60 | 56 59 | spcev | |
61 | 55 60 | syl | |
62 | eu6 | |
|
63 | 61 62 | sylibr | |