Metamath Proof Explorer


Theorem evl1gsummul

Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q Q=eval1R
evl1gsumadd.k K=BaseR
evl1gsumadd.w W=Poly1R
evl1gsumadd.p P=R𝑠K
evl1gsumadd.b B=BaseW
evl1gsumadd.r φRCRing
evl1gsumadd.y φxNYB
evl1gsumadd.n φN0
evl1gsummul.1 1˙=1W
evl1gsummul.g G=mulGrpW
evl1gsummul.h H=mulGrpP
evl1gsummul.f φfinSupp1˙xNY
Assertion evl1gsummul φQGxNY=HxNQY

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q Q=eval1R
2 evl1gsumadd.k K=BaseR
3 evl1gsumadd.w W=Poly1R
4 evl1gsumadd.p P=R𝑠K
5 evl1gsumadd.b B=BaseW
6 evl1gsumadd.r φRCRing
7 evl1gsumadd.y φxNYB
8 evl1gsumadd.n φN0
9 evl1gsummul.1 1˙=1W
10 evl1gsummul.g G=mulGrpW
11 evl1gsummul.h H=mulGrpP
12 evl1gsummul.f φfinSupp1˙xNY
13 10 5 mgpbas B=BaseG
14 10 9 ringidval 1˙=0G
15 3 ply1crng RCRingWCRing
16 10 crngmgp WCRingGCMnd
17 6 15 16 3syl φGCMnd
18 crngring RCRingRRing
19 6 18 syl φRRing
20 2 fvexi KV
21 19 20 jctir φRRingKV
22 4 pwsring RRingKVPRing
23 11 ringmgp PRingHMnd
24 21 22 23 3syl φHMnd
25 nn0ex 0V
26 25 a1i φ0V
27 26 8 ssexd φNV
28 1 3 4 2 evl1rhm RCRingQWRingHomP
29 10 11 rhmmhm QWRingHomPQGMndHomH
30 6 28 29 3syl φQGMndHomH
31 13 14 17 24 27 30 7 12 gsummptmhm φHxNQY=QGxNY
32 31 eqcomd φQGxNY=HxNQY