Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evladdval.q | |
|
evladdval.p | |
||
evladdval.k | |
||
evladdval.b | |
||
evladdval.g | |
||
evladdval.f | |
||
evladdval.i | |
||
evladdval.s | |
||
evladdval.a | |
||
evladdval.m | |
||
evladdval.n | |
||
Assertion | evladdval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evladdval.q | |
|
2 | evladdval.p | |
|
3 | evladdval.k | |
|
4 | evladdval.b | |
|
5 | evladdval.g | |
|
6 | evladdval.f | |
|
7 | evladdval.i | |
|
8 | evladdval.s | |
|
9 | evladdval.a | |
|
10 | evladdval.m | |
|
11 | evladdval.n | |
|
12 | eqid | |
|
13 | 1 3 2 12 | evlrhm | |
14 | 7 8 13 | syl2anc | |
15 | rhmghm | |
|
16 | 14 15 | syl | |
17 | ghmgrp1 | |
|
18 | 16 17 | syl | |
19 | 10 | simpld | |
20 | 11 | simpld | |
21 | 4 5 18 19 20 | grpcld | |
22 | eqid | |
|
23 | 4 5 22 | ghmlin | |
24 | 16 19 20 23 | syl3anc | |
25 | eqid | |
|
26 | ovexd | |
|
27 | 4 25 | rhmf | |
28 | 14 27 | syl | |
29 | 28 19 | ffvelcdmd | |
30 | 28 20 | ffvelcdmd | |
31 | 12 25 8 26 29 30 6 22 | pwsplusgval | |
32 | 24 31 | eqtrd | |
33 | 32 | fveq1d | |
34 | 12 3 25 8 26 29 | pwselbas | |
35 | 34 | ffnd | |
36 | 12 3 25 8 26 30 | pwselbas | |
37 | 36 | ffnd | |
38 | fnfvof | |
|
39 | 35 37 26 9 38 | syl22anc | |
40 | 10 | simprd | |
41 | 11 | simprd | |
42 | 40 41 | oveq12d | |
43 | 33 39 42 | 3eqtrd | |
44 | 21 43 | jca | |