Metamath Proof Explorer


Theorem evladdval

Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evladdval.q Q=IevalS
evladdval.p P=ImPolyS
evladdval.k K=BaseS
evladdval.b B=BaseP
evladdval.g ˙=+P
evladdval.f +˙=+S
evladdval.i φIZ
evladdval.s φSCRing
evladdval.a φAKI
evladdval.m φMBQMA=V
evladdval.n φNBQNA=W
Assertion evladdval φM˙NBQM˙NA=V+˙W

Proof

Step Hyp Ref Expression
1 evladdval.q Q=IevalS
2 evladdval.p P=ImPolyS
3 evladdval.k K=BaseS
4 evladdval.b B=BaseP
5 evladdval.g ˙=+P
6 evladdval.f +˙=+S
7 evladdval.i φIZ
8 evladdval.s φSCRing
9 evladdval.a φAKI
10 evladdval.m φMBQMA=V
11 evladdval.n φNBQNA=W
12 eqid S𝑠KI=S𝑠KI
13 1 3 2 12 evlrhm IZSCRingQPRingHomS𝑠KI
14 7 8 13 syl2anc φQPRingHomS𝑠KI
15 rhmghm QPRingHomS𝑠KIQPGrpHomS𝑠KI
16 14 15 syl φQPGrpHomS𝑠KI
17 ghmgrp1 QPGrpHomS𝑠KIPGrp
18 16 17 syl φPGrp
19 10 simpld φMB
20 11 simpld φNB
21 4 5 18 19 20 grpcld φM˙NB
22 eqid +S𝑠KI=+S𝑠KI
23 4 5 22 ghmlin QPGrpHomS𝑠KIMBNBQM˙N=QM+S𝑠KIQN
24 16 19 20 23 syl3anc φQM˙N=QM+S𝑠KIQN
25 eqid BaseS𝑠KI=BaseS𝑠KI
26 ovexd φKIV
27 4 25 rhmf QPRingHomS𝑠KIQ:BBaseS𝑠KI
28 14 27 syl φQ:BBaseS𝑠KI
29 28 19 ffvelcdmd φQMBaseS𝑠KI
30 28 20 ffvelcdmd φQNBaseS𝑠KI
31 12 25 8 26 29 30 6 22 pwsplusgval φQM+S𝑠KIQN=QM+˙fQN
32 24 31 eqtrd φQM˙N=QM+˙fQN
33 32 fveq1d φQM˙NA=QM+˙fQNA
34 12 3 25 8 26 29 pwselbas φQM:KIK
35 34 ffnd φQMFnKI
36 12 3 25 8 26 30 pwselbas φQN:KIK
37 36 ffnd φQNFnKI
38 fnfvof QMFnKIQNFnKIKIVAKIQM+˙fQNA=QMA+˙QNA
39 35 37 26 9 38 syl22anc φQM+˙fQNA=QMA+˙QNA
40 10 simprd φQMA=V
41 11 simprd φQNA=W
42 40 41 oveq12d φQMA+˙QNA=V+˙W
43 33 39 42 3eqtrd φQM˙NA=V+˙W
44 21 43 jca φM˙NBQM˙NA=V+˙W